toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Zhou, Y.; Zhang, H.-K.; Liu, F.; Lei, G.; Liu, P.; Jiao, T.; Dang, Y.-H. url  doi
openurl 
  Title Altered Light Conditions Contribute to Abnormalities in Emotion and Cognition Through HINT1 Dysfunction in C57BL/6 Mice Type Journal Article
  Year 2018 Publication Frontiers in Behavioral Neuroscience Abbreviated Journal (up) Front Behav Neurosci  
  Volume 12 Issue Pages 110  
  Keywords Animals  
  Abstract In recent years, the environmental impact of artificial light at night has been a rapidly growing global problem, affecting 99% of the population in the US and Europe, and 62% of the world population. The present study utilized a mouse model exposed to long-term artificial light and light deprivation to explore the impact of these conditions on emotion and cognition. Based on the potential links between histidine triad nucleotide binding protein 1 (HINT1) and mood disorders, we also examined the expression of HINT1 and related apoptosis factors in the suprachiasmatic nucleus (SCN), prefrontal cortex (PFC), nucleus accumbens (NAc) and hippocampus (Hip). Mice exposed to constant light (CL) exhibited depressive- and anxiety-like behaviors, as well as impaired spatial memory, as demonstrated by an increased immobility time in the tail suspension and forced swimming tests, less entries and time spent in the open arms of elevated plus-maze, and less platform site crossings and time spent in the target quadrant in the Morris water maze (MWM). The effects of constant darkness (CD) partially coincided with long-term illumination, except that mice in the CD group failed to show anxiety-like behaviors. Furthermore, HINT1 was upregulated in four encephalic regions, indicating that HINT1 may be involved in mood disorders and cognitive impairments due to altered light exposure. The apoptosis-related proteins, BAX and BCL-2, showed the opposite expression pattern, reflecting an activated apoptotic pathway. These findings suggest that exposure to CL and/or darkness can induce significant changes in affective and cognitive responses, possibly through HINT1-induced activation of apoptotic pathways.  
  Address College of Medicine & Forensics, Xi'an Jiaotong University Health Science Center, Xi'an, China  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1662-5153 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:29937721; PMCID:PMC6002487 Approved no  
  Call Number NC @ ehyde3 @ Serial 2094  
Permanent link to this record
 

 
Author Hopkins, G.R.; Gaston, K.J.; Visser, M.E.; Elgar, M.A.; Jones, T.M. url  doi
openurl 
  Title Artificial light at night as a driver of evolution across urban-rural landscapes Type Journal Article
  Year 2018 Publication Frontiers in Ecology and the Environment Abbreviated Journal (up) Front Ecol Environ  
  Volume 16 Issue 8 Pages 472-479  
  Keywords Ecology, Commentary  
  Abstract Light is fundamental to biological systems, affecting the daily rhythms of bacteria, plants, and animals. Artificial light at night (ALAN), a ubiquitous feature of urbanization, interferes with these rhythms and has the potential to exert strong selection pressures on organisms living in urban environments. ALAN also fragments landscapes, altering the movement of animals into and out of artificially lit habitats. Although research has documented phenotypic and genetic differentiation between urban and rural organisms, ALAN has rarely been considered as a driver of evolution. We argue that the fundamental importance of light to biological systems, and the capacity for ALAN to influence multiple processes contributing to evolution, makes this an important driver of evolutionary change, one with the potential to explain broad patterns of population differentiation across urban–rural landscapes. Integrating ALAN's evolutionary potential into urban ecology is a targeted and powerful approach to understanding the capacity for life to adapt to an increasingly urbanized world.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1540-9295 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number NC @ ehyde3 @ Serial 2073  
Permanent link to this record
 

 
Author Buonfiglio, D.; Parthimos, R.; Dantas, R.; Cerqueira Silva, R.; Gomes, G.; Andrade-Silva, J.; Ramos-Lobo, A.; Amaral, F.G.; Matos, R.; Sinesio, J.J.; Motta-Teixeira, L.C.; Donato, J.J.; Reiter, R.J.; Cipolla-Neto, J. url  doi
openurl 
  Title Melatonin Absence Leads to Long-Term Leptin Resistance and Overweight in Rats Type Journal Article
  Year 2018 Publication Frontiers in Endocrinology Abbreviated Journal (up) Front Endocrinol (Lausanne)  
  Volume 9 Issue Pages 122  
  Keywords Human health  
  Abstract Melatonin (Mel), a molecule that conveys photoperiodic information to the organisms, is also involved in the regulation of energy homeostasis. Mechanisms of action of Mel in the energy balance remain unclear; herein we investigated how Mel regulates energy intake and expenditure to promote a proper energy balance. Male Wistar rats were assigned to control, control + Mel, pinealectomized (PINX) and PINX + Mel groups. To restore a 24-h rhythm, Mel (1 mg/kg) was added to the drinking water exclusively during the dark phase for 13 weeks. After this treatment period, rats were subjected to a 24-h fasting test, an acute leptin responsiveness test and cold challenge. Mel treatment reduced food intake, body weight, and adiposity. When challenged to 24-h fasting, Mel-treated rats also showed reduced hyperphagia when the food was replaced. Remarkably, PINX rats exhibited leptin resistance; this was likely related to the capacity of leptin to affect body weight, food intake, and hypothalamic signal-transducer and activator of transcription 3 phosphorylation, all of which were reduced. Mel treatment restored leptin sensitivity in PINX rats. An increased hypothalamic expression of agouti-related peptide (Agrp), neuropeptide Y, and Orexin was observed in the PINX group while Mel treatment reduced the expression of Agrp and Orexin. In addition, PINX rats presented lower UCP1 protein levels in the brown adipose tissue and required higher tail vasoconstriction to get a proper thermogenic response to cold challenge. Our findings reveal a previously unrecognized interaction of Mel and leptin in the hypothalamus to regulate the energy balance. These findings may help to explain the high incidence of metabolic diseases in individuals exposed to light at night.  
  Address Department of Physiology and Biophysics, Institute of Biomedical Sciences-I, University of Sao Paulo (USP), Sao Paulo, Brazil  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1664-2392 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:29636725; PMCID:PMC5881424 Approved no  
  Call Number NC @ ehyde3 @ Serial 2093  
Permanent link to this record
 

 
Author Gonzalez, M.M.C.; Golombek, D.A. url  doi
openurl 
  Title Editorial: Let There Be Light: Biological Impact of Light Exposure in the Laboratory and the Clinic Type Journal Article
  Year 2018 Publication Frontiers in Neurology Abbreviated Journal (up) Front Neurol  
  Volume 9 Issue Pages  
  Keywords Commentary; Animals  
  Abstract  
  Address Department of Science and Technology, Universidad Nacional de Quilmes, Bernal, Argentina  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1664-2295 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:30356725; PMCID:PMC6189324 Approved no  
  Call Number NC @ ehyde3 @ Serial 2072  
Permanent link to this record
 

 
Author Gonzalez, M.M.C. url  doi
openurl 
  Title Dim Light at Night and Constant Darkness: Two Frequently Used Lighting Conditions That Jeopardize the Health and Well-being of Laboratory Rodents Type Journal Article
  Year 2018 Publication Frontiers in Neurology Abbreviated Journal (up) Front Neurol  
  Volume 9 Issue Pages 609  
  Keywords Animals; Review  
  Abstract The influence of light on mammalian physiology and behavior is due to the entrainment of circadian rhythms complemented with a direct modulation of light that would be unlikely an outcome of circadian system. In mammals, physiological and behavioral circadian rhythms are regulated by the suprachiasmatic nucleus (SCN) of the hypothalamus. This central control allows organisms to predict and anticipate environmental change, as well as to coordinate different rhythmic modalities within an individual. In adult mammals, direct retinal projections to the SCN are responsible for resetting and synchronizing physiological and behavioral rhythms to the light-dark (LD) cycle. Apart from its circadian effects, light also has direct effects on certain biological functions in such a way that the participation of the SCN would not be fundamental for this network. The objective of this review is to increase awareness, within the scientific community and commercial providers, of the fact that laboratory rodents can experience a number of adverse health and welfare outcomes attributed to commonly-used lighting conditions in animal facilities during routine husbandry and scientific procedures, widely considered as “environmentally friendly.” There is increasing evidence that exposure to dim light at night, as well as chronic constant darkness, challenges mammalian physiology and behavior resulting in disrupted circadian rhythms, neural death, a depressive-behavioral phenotype, cognitive impairment, and the deregulation of metabolic, physiological, and synaptic plasticity in both the short and long terms. The normal development and good health of laboratory rodents requires cyclical light entrainment, adapted to the solar cycle of day and night, with null light at night and safe illuminating qualities during the day. We therefore recommend increased awareness of the limited information available with regards to lighting conditions, and therefore that lighting protocols must be taken into consideration when designing experiments and duly highlighted in scientific papers. This practice will help to ensure the welfare of laboratory animals and increase the likelihood of producing reliable and reproducible results.  
  Address Seccion Cronobiologia y Sueno, Instituto Ferrero de Neurologia y Sueno, Buenos Aires, Argentina  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1664-2295 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:30116218; PMCID:PMC6084421 Approved no  
  Call Number NC @ ehyde3 @ Serial 2084  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: