toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Farkas, T.D.; Kiràly, T.; Pardy, T.; Rang, T.; Rang, G. url  doi
openurl 
  Title Application of power line communication technology in street lighting control Type Journal Article
  Year 2018 Publication International Journal of Design & Nature and Ecodynamics Abbreviated Journal (up) Int. J. DNE  
  Volume 13 Issue 2 Pages 176-186  
  Keywords Lighting  
  Abstract Rapidly increasing usage of telecommunication systems causes new transmission technologies and networks to emerge. Not only the efficiency, reliability and accessibility of the network are important, but also the economic issues. One cost-effective solution could be power line communication (PLC) technology, which transmits data using the existing electricity infrastructure. The application of this communication technique is an attractive and innovative solution for the realization of smart cities and smart homes. With intelligent control networks, energy savings can be optimized and the operating as well as maintenance costs can be reduced. Since outdoor lighting systems are the major consumers of electricity, to create a modern, energy-efficient city, intelligent street lighting control is needed. This paper provides an overview of power line communication principles including the theoretical background of data communication, modulation techniques, channel access methods, protocols, disturbances and noises. Furthermore, in order to highlight the benefits of a PLC-based street lighting control system, a pilot project will be presented.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1755-7437 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number NC @ ehyde3 @ Serial 2091  
Permanent link to this record
 

 
Author Kernbach, M.E.; Hall, R.J.; Burkett-Cadena, N.; Unnasch, T.R.; Martin, L.B. url  doi
openurl 
  Title Dim light at night: physiological effects and ecological consequences for infectious disease Type Journal Article
  Year 2018 Publication Integrative and Comparative Biology Abbreviated Journal (up) Integr Comp Biol  
  Volume 58 Issue 5 Pages 995-1007  
  Keywords Animals  
  Abstract Light pollution has emerged as a pervasive component of land development over the past century. Several detrimental impacts of this anthropogenic influence have been identified in night shift workers, laboratory rodents, and a plethora of wildlife species. Circadian, or daily, patterns are interrupted by the presence of light at night and have the capacity to alter rhythmic physiological or behavioral characteristics. Indeed, biorhythm disruption can lead to metabolic, reproductive, and immunological dysfunction depending on the intensity, timing, duration and wavelength of light exposure. Light pollution, in many forms and by many pathways, is thus apt to affect the nature of host-pathogen interactions. However, no research has yet investigated this possibility. The goal of this manuscript is to outline how dim light at night (dLAN), a relevant and common form of light pollution, may affect disease dynamics by interrupting circadian rhythms and regulation of immune responses as well as opportunities for host-parasite interactions and subsequent transmission risk including spillover into humans. We close by proposing some promising interventions including alternative lighting methods or vector control efforts.  
  Address Department of Global Health, University of South Florida, Tampa FL  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1540-7063 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:29939262 Approved no  
  Call Number GFZ @ kyba @ Serial 1946  
Permanent link to this record
 

 
Author Tarquini, R.; Carbone, A.; Martinez, M.; Mazzoccoli, G. url  doi
openurl 
  Title Daylight saving time and circadian rhythms in the neuro-endocrine-immune system: impact on cardiovascular health Type Journal Article
  Year 2018 Publication Internal and Emergency Medicine Abbreviated Journal (up) Intern Emerg Med  
  Volume in press Issue Pages  
  Keywords Human Health  
  Abstract  
  Address Division of Internal Medicine and Laboratory of Chronobiology, Department of Medical Sciences, Fondazione IRCCS “Casa Sollievo Della Sofferenza”, Cappuccini Avenue, San Giovanni Rotondo, Foggia, 71013, Italy. g.mazzoccoli@operapadrepio.it  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1828-0447 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:30488154 Approved no  
  Call Number GFZ @ kyba @ Serial 2121  
Permanent link to this record
 

 
Author Zheng, Q.; Jiang, R.; Wang, K.; Huang, L.; Ye, Z.; Gan, M.; Ji, B. url  doi
openurl 
  Title Monitoring the trajectory of urban nighttime light hotspots using a Gaussian volume model Type Journal Article
  Year 2018 Publication International Journal of Applied Earth Observation and Geoinformation Abbreviated Journal (up) International Journal of Applied Earth Observation and Geoinformation  
  Volume 65 Issue Pages 24-34  
  Keywords Remote Sensing  
  Abstract Urban nighttime light hotspot is an ideal representation of the spatial heterogeneity of human activities within a city, which is sensitive to regional urban expansion pattern. However, most of previous studies related to nighttime light imageries focused on extracting urban extent, leaving the spatial variation of radiance intensity insufficiently explored. With the help of global radiance calibrated DMSP-OLS datasets (NTLgrc), we proposed an innovative framework to explore the spatio-temporal trajectory of polycentric urban nighttime light hotspots. Firstly, NTLgrc was inter-annually calibrated to improve the consistency. Secondly, multi-resolution segmentation and region-growing SVM classification were employed to remove blooming effect and to extract potential clusters. At last, the urban hotspots were identified by a Gaussian volume model, and the resulting parameters were used to quantitatively depict hotspot features (i.e., intensity, morphology and centroid dynamics). The result shows that our framework successfully captures hotspots in polycentric urban area, whose Ra2 are over 0.9. Meanwhile, the spatio-temporal dynamics of the hotspot features intuitively reveal the impact of the regional urban growth pattern and planning strategies on human activities. Compared to previous studies, our framework is more robust and offers an effective way to describe hotspot pattern. Also, it provides a more comprehensive and spatial-explicit understanding regarding the interaction between urbanization pattern and human activities. Our findings are expected to be beneficial to governors in term of sustainable urban planning and decision making.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0303-2434 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number LoNNe @ kyba @ Serial 1771  
Permanent link to this record
 

 
Author Landis, E.G.; Yang, V.; Brown, D.M.; Pardue, M.T.; Read, S.A. url  doi
openurl 
  Title Dim Light Exposure and Myopia in Children Type Journal Article
  Year 2018 Publication Investigative Ophthalmology & Visual Science Abbreviated Journal (up) Invest Ophthalmol Vis Sci  
  Volume 59 Issue 12 Pages 4804-4811  
  Keywords Human Health  
  Abstract Purpose: Experimental myopia in animal models suggests that bright light can influence refractive error and prevent myopia. Additionally, animal research indicates activation of rod pathways and circadian rhythms may influence eye growth. In children, objective measures of personal light exposure, recorded by wearable light sensors, have been used to examine the effects of bright light exposure on myopia. The effect of time spent in a broad range of light intensities on childhood refractive development is not known. This study aims to evaluate dim light exposure in myopia. Methods: We reanalyzed previously published data to investigate differences in dim light exposure across myopic and nonmyopic children from the Role of Outdoor Activity in Myopia (ROAM) study in Queensland, Australia. The amount of time children spent in scotopic (<1-1 lux), mesopic (1-30 lux), indoor photopic (>30-1000 lux), and outdoor photopic (>1000 lux) light over both weekdays and weekends was measured with wearable light sensors. Results: We found significant differences in average daily light exposure between myopic and nonmyopic children. On weekends, myopic children received significantly less scotopic light (P = 0.024) and less outdoor photopic light than nonmyopic children (P < 0.001). In myopic children, more myopic refractive errors were correlated with increased time in mesopic light (R = -0.46, P = 0.002). Conclusions: These findings suggest that in addition to bright light exposure, rod pathways stimulated by dim light exposure could be important to human myopia development. Optimal strategies for preventing myopia with environmental light may include both dim and bright light exposure.  
  Address School of Optometry and Vision Science, Queensland University of Technology, Brisbane, Queensland, Australia  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0146-0404 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:30347074; PMCID:PMC6181186 Approved no  
  Call Number NC @ ehyde3 @ Serial 2097  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: