toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Solano-Lamphar, H.A.; Kocifaj, M. url  doi
openurl 
  Title Numerical research on the effects the skyglow could have in phytochromes and RQE photoreceptors of plants Type Journal Article
  Year 2018 Publication Journal of Environmental Management Abbreviated Journal (up) J Environ Manage  
  Volume 209 Issue Pages 484-494  
  Keywords Plants; Skyglow  
  Abstract The increase of artificial light at night has a terrible impact on organisms with nightlife patterns such as a migration, nutrition, reproduction and collective interaction. Plants are not free from this issue as they have life cycle events occurring not only yearly but also daily. Such events relate to daytime variations with seasons in which the flowers of deciduous trees bloom and the leaves of certain trees fall off and change color. A response of plants to artificial light at night still remains poorly quantified; but recent scientific research suggest that skyglow can disturb plants processes. For instance, low levels of light affect deciduous plants, which shed their leaves as days grow short in the fall. In this paper we model skyglow considering the features of artificial light that can affect natural processes of plants during the night. A case-study was conducted to mimic skyglow effects in real location for which experimental data exist. In our numerical simulations we found that some lighting systems can have an effect on plant photoreceptors and affect the phenology of plants. Specifically, the lamps that emit the electromagnetic energy in a wide spectral range can have greater effect on the photosensitivity of the plants. We believe the results obtained here will motivate botanists to make a targeted experiment to verify or challenge our findings. If the night light can change plant behavior under some conditions, it can have significant implications in botany, biology, or even agriculture.  
  Address ICA, Slovak Academy of Sciences, Dubravska Road 9, 845 03, Bratislava, Slovak Republic; Faculty of Mathematics, Physics, and Informatics, Comenius University, Mlynska Dolina, 842 48, Bratislava, Slovakia. Electronic address: kocifaj@savba.sk  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0301-4797 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:29316469 Approved no  
  Call Number GFZ @ kyba @ Serial 1854  
Permanent link to this record
 

 
Author Kelsey, E.C.; Felis, J.J.; Czapanskiy, M.; Pereksta, D.M.; Adams, J. url  doi
openurl 
  Title Collision and displacement vulnerability to offshore wind energy infrastructure among marine birds of the Pacific Outer Continental Shelf Type Journal Article
  Year 2018 Publication Journal of Environmental Management Abbreviated Journal (up) J Environ Manage  
  Volume 227 Issue Pages 229-247  
  Keywords Animals  
  Abstract Marine birds are vulnerable to collision with and displacement by offshore wind energy infrastructure (OWEI). Here we present the first assessment of marine bird vulnerability to potential OWEI in the California Current System portion of the U.S. Pacific Outer Continental Shelf (POCS). Using population size, demography, life history, flight heights, and avoidance behavior for 62 seabird and 19 marine water bird species that occur in the POCS, we present and apply equations to calculate Population Vulnerability, Collision Vulnerability, and Displacement Vulnerability to OWEI for each species. Species with greatest Population vulnerability included those listed as species of concern (e.g., Least Tern [Sternula antillarum], Marbled Murrelet [Brachyramphus marmoratus], Pink-footed Shearwater [Puffinus creatopus]) and resident year-round species with small population sizes (e.g., Ashy Storm-Petrel [Oceanodroma homochroa], Brandt's Cormorant [Phalacrocorax penicillatus], and Brown Pelican [Pelecanus occidentalis]). Species groups with the greatest Collision Vulnerability included jaegers/skuas, pelicans, terns and gulls that spend significant amounts of time flying at rotor sweep zone height and don't show macro-avoidance behavior (avoidance of entire OWEI area). Species groups with the greatest Displacement Vulnerability show high macro-avoidance behavior and low habitat flexibility and included loons, grebes, sea ducks, and alcids. Using at-sea survey data from the southern POCS, we combined species-specific vulnerabilities described above with at-sea species densities to assess vulnerabilities spatially. Spatial vulnerability densities were greatest in areas with high species densities (e.g., near-shore areas) and locations where species with high vulnerability were found in abundance. Our vulnerability assessment helps understand and minimize potential impacts of OWEI infrastructure on marine birds in the POCS and could inform management decisions.  
  Address U.S. Geological Survey Western Ecological Research Center, Santa Cruz, CA 95062, USA  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0301-4797 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:30195148 Approved no  
  Call Number GFZ @ kyba @ Serial 2122  
Permanent link to this record
 

 
Author Ouyang, J.Q.; Davies, S.; Dominoni, D. url  doi
openurl 
  Title Hormonally mediated effects of artificial light at night on behavior and fitness: linking endocrine mechanisms with function Type Journal Article
  Year 2018 Publication The Journal of Experimental Biology Abbreviated Journal (up) J Exp Biol  
  Volume 221 Issue Pt 6 Pages  
  Keywords Human Health; Alan; Glucocorticoid; Hormones; Light pollution; Melatonin; Metabolism; Sleep; Stress; Thyroid; Urban ecology  
  Abstract Alternation between day and night is a predictable environmental fluctuation that organisms use to time their activities. Since the invention of artificial lighting, this predictability has been disrupted and continues to change in a unidirectional fashion with increasing urbanization. As hormones mediate individual responses to changing environments, endocrine systems might be one of the first systems affected, as well as being the first line of defense to ameliorate any negative health impacts. In this Review, we first highlight how light can influence endocrine function in vertebrates. We then focus on four endocrine axes that might be affected by artificial light at night (ALAN): pineal, reproductive, adrenal and thyroid. Throughout, we highlight key findings, rather than performing an exhaustive review, in order to emphasize knowledge gaps that are hindering progress on proposing impactful and concrete plans to ameliorate the negative effects of ALAN. We discuss these findings with respect to impacts on human and animal health, with a focus on the consequences of anthropogenic modification of the night-time environment for non-human organisms. Lastly, we stress the need for the integration of field and lab experiments as well as the need for long-term integrative eco-physiological studies in the rapidly expanding field of light pollution.  
  Address Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow G12 8QQ, UK;  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-0949 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:29545373 Approved no  
  Call Number IDA @ john @ Serial 1817  
Permanent link to this record
 

 
Author Rodríguez Martín, A.; Holmberg, R.; Dann, P.; Chiaradia, A. url  doi
openurl 
  Title Penguin colony attendance under artificial lights for ecotourism Type Journal Article
  Year 2018 Publication Journal of Experimental Zoology. Part A, Ecological and Integrative Physiology Abbreviated Journal (up) J Exp Zool A Ecol Integr Physiol  
  Volume 329 Issue 8-9 Pages 457-464  
  Keywords Animals  
  Abstract Wildlife watching is an emerging ecotourism activity around the world. In Australia and New Zealand, night viewing of little penguins attracts hundreds of thousands of visitors per year. As penguins start coming ashore after sunset, artificial lighting is essential to allow visitors to view them in the dark. This alteration of the nightscape warrants investigation for any potential effects of artificial lighting on penguin behavior. We experimentally tested how penguins respond to different light wavelengths (colors) and intensities to examine effects on the colony attendance behavior at two sites on Phillip Island, Australia. At one site, nocturnal artificial illumination has been used for penguin viewing for decades, whereas at the other site, the only light is from the natural night sky. Light intensity did not affect colony attendance behaviors of penguins at the artificially lit site, probably due to penguin habituation to lights. At the not previously lit site, penguins preferred lit paths over dark paths to reach their nests. Thus, artificial light might enhance penguin vision at night and consequently it might reduce predation risk and energetic costs of locomotion through obstacle and path detection. Although penguins are faithful to their path, they can be drawn to artificial lights at small spatial scale, so light pollution could attract penguins to undesirable lit areas. When artificial lighting is required, we recommend keeping lighting as dim and time-restricted as possible to mitigate any negative effects on the behavior of penguins and their natural habitat.  
  Address Research Department, Phillip Island Nature Parks, Cowes, Victoria, Australia  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2471-5638 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:29603671 Approved no  
  Call Number GFZ @ kyba @ Serial 1834  
Permanent link to this record
 

 
Author Sanders, D.; Gaston, K.J. url  doi
openurl 
  Title How ecological communities respond to artificial light at night Type Journal Article
  Year 2018 Publication Journal of Experimental Zoology. Part A, Ecological and Integrative Physiology Abbreviated Journal (up) J Exp Zool A Ecol Integr Physiol  
  Volume 329 Issue 8-9 Pages 394-400  
  Keywords Ecology  
  Abstract Many ecosystems worldwide are exposed to artificial light at night (ALAN), from streetlights and other sources, and a wide range of organisms has been shown to respond to this anthropogenic pressure. This raises concerns about the consequences for major ecosystem functions and their stability. However, there is limited understanding of how whole ecological communities respond to ALAN, and this cannot be gained simply by making predictions from observed single species physiological, behavioral, or ecological responses. Research needs to include an important building block of ecological communities, namely the interactions between species that drive ecological and evolutionary processes in ecosystems. Here, we summarize current knowledge about community responses to ALAN and illustrate different pathways and their impact on ecosystem functioning and stability. We discuss that documentation of the impact of ALAN on species interaction networks and trait distributions provides useful tools to link changes in community structure to ecosystem functions. Finally, we suggest several approaches to advance research that will link the diverse impact of ALAN to changes in ecosystems.  
  Address Wissenschaftskolleg zu Berlin, Institute for Advanced Study, Berlin, Germany  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2471-5638 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:29656458 Approved no  
  Call Number GFZ @ kyba @ Serial 1857  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: