|   | 
Details
   web
Records
Author Boswell, W.T.; Boswell, M.; Walter, D.J.; Navarro, K.L.; Chang, J.; Lu, Y.; Savage, M.G.; Shen, J.; Walter, R.B.
Title Exposure to 4100K fluorescent light elicits sex specific transcriptional responses in Xiphophorus maculatus skin Type Journal Article
Year 2018 Publication Comparative Biochemistry and Physiology. Toxicology & Pharmacology : CBP Abbreviated Journal Comp Biochem Physiol C Toxicol Pharmacol
Volume 208 Issue Pages 96-104
Keywords Animals
Abstract (down) It has been reported that exposure to artificial light may affect oxygen intake, heart rate, absorption of vitamins and minerals, and behavioral responses in humans. We have reported specific gene expression responses in the skin of Xiphophorus fish after exposure to ultraviolet light (UV), as well as, both broad spectrum and narrow waveband visible light. In regard to fluorescent light (FL), we have shown that male X. maculatus exposed to 4100K FL (i.e. “cool white”) rapidly suppress transcription of many genes involved with DNA replication and repair, chromosomal segregation, and cell cycle progression in skin. We have also detailed sex specific transcriptional responses of Xiphophorus skin after exposure to UVB. However, investigation of gender differences in global gene expression response after exposure to 4100K FL has not been reported, despite common use of this FL source for residential, commercial, and animal facility illumination. Here, we compare RNASeq results analyzed to assess changes in the global transcription profiles of female and male X. maculatus skin in response to 4100K FL exposure. Our results suggest 4100K FL exposure incites a sex-biased genetic response including up-modulation of inflammation in females and down modulation of DNA repair/replication in males. In addition, we identify clusters of genes that become oppositely modulated in males and females after FL exposure that are principally involved in cell death and cell proliferation.
Address Department of Chemistry and Biochemistry, Xiphophorus Genetic Stock Center, Texas State University, 601 University Drive, San Marcos, TX 78666, USA. Electronic address: RW12@txstate.edu
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1532-0456 ISBN Medium
Area Expedition Conference
Notes PMID:28965926 Approved no
Call Number LoNNe @ kyba @ Serial 1739
Permanent link to this record
 

 
Author Lu, H.; Zhang, M.; Sun, W.; Li, W.
Title Expansion Analysis of Yangtze River Delta Urban Agglomeration Using DMSP/OLS Nighttime Light Imagery for 1993 to 2012 Type Journal Article
Year 2018 Publication ISPRS International Journal of Geo-Information Abbreviated Journal Ijgi
Volume 7 Issue 2 Pages 52
Keywords Remote Sensing
Abstract (down) Investigating the characteristics of urban expansion is helpful in managing the relationship between urbanization and the ecological and environmental issues related to sustainable development. The Defense Meteorological Satellite Program/Operational Line-scan System (DMSP/OLS) collects visible and near-infrared light from the Earth’s surface at night without moonlight. It generates effective time series data for mapping the dynamics of urban expansion. As a major urban agglomeration in the world, the Yangtze River Delta Urban Agglomeration (YRDUA) is an important intersection zone of both the “Belt and Road Initiative” and the “Yangtze River Economic Belt” in China. Therefore, this paper analyses urban expansion characteristics of the YRDUA for 1993–2012 from urban extents extracted from the DMSP/OLS for 1993, 1997, 2002, 2007, and 2012. First, calibration procedures are applied to DMSP/OLS data, including intercalibration, intra-annual composition, and inter-annual series correction procedures. Spatial extents are then extracted from the corrected DMSP/OLS data, and a threshold is determined via the spatial comparison method. Finally, three models are used to explore urban expansion characteristics of the YRDUA from expansion rates, expansion spatial patterns, and expansion evaluations. The results show that the urban expansion of the YRDUA occurred at an increasing rate from 1993–2007 and then declined after 2007 with the onset of the global financial crisis. The Suxichang and Ningbo metropolitan circles were seriously affected by the financial crisis, while the Hefei metropolitan circle was not. The urban expansion of the YRDUA moved from the northeast to the southwest over the 20-year period. Urban expansion involved internal infilling over the first 15 years and then evolved into external sprawl and suburbanization after 2007.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2220-9964 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number LoNNe @ kyba @ Serial 1813
Permanent link to this record
 

 
Author Jan Stenvers, D.; Scheer, F.A.J.L.; Schrauwen, P.; la Fleur, S.E.; Kalsbeek, A.
Title Circadian clocks and insulin resistance Type Journal Article
Year 2018 Publication Nature Reviews. Endocrinology Abbreviated Journal Nat Rev Endocrinol
Volume in press Issue Pages
Keywords Human Health; Review
Abstract (down) Insulin resistance is a main determinant in the development of type 2 diabetes mellitus and a major cause of morbidity and mortality. The circadian timing system consists of a central brain clock in the hypothalamic suprachiasmatic nucleus and various peripheral tissue clocks. The circadian timing system is responsible for the coordination of many daily processes, including the daily rhythm in human glucose metabolism. The central clock regulates food intake, energy expenditure and whole-body insulin sensitivity, and these actions are further fine-tuned by local peripheral clocks. For instance, the peripheral clock in the gut regulates glucose absorption, peripheral clocks in muscle, adipose tissue and liver regulate local insulin sensitivity, and the peripheral clock in the pancreas regulates insulin secretion. Misalignment between different components of the circadian timing system and daily rhythms of sleep-wake behaviour or food intake as a result of genetic, environmental or behavioural factors might be an important contributor to the development of insulin resistance. Specifically, clock gene mutations, exposure to artificial light-dark cycles, disturbed sleep, shift work and social jet lag are factors that might contribute to circadian disruption. Here, we review the physiological links between circadian clocks, glucose metabolism and insulin sensitivity, and present current evidence for a relationship between circadian disruption and insulin resistance. We conclude by proposing several strategies that aim to use chronobiological knowledge to improve human metabolic health.
Address Netherlands Institute for Neuroscience (NIN), Royal Dutch Academy of Arts and Sciences (KNAW), Amsterdam, Netherlands. a.kalsbeek@nin.knaw.nl
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1759-5029 ISBN Medium
Area Expedition Conference
Notes PMID:30531917 Approved no
Call Number GFZ @ kyba @ Serial 2133
Permanent link to this record
 

 
Author Gaydecki, P.
Title Automated moth flight analysis in the vicinity of artificial light Type Journal Article
Year 2018 Publication Bulletin of Entomological Research Abbreviated Journal Bull Entomol Res
Volume 109 Issue 1 Pages 127-140
Keywords Instrumentation; Animals
Abstract (down) Instrumentation and software for the automated analysis of insect flight trajectories is described, intended for quantifying the behavioural dynamics of moths in the vicinity of artificial light. For its time, this moth imaging system was relatively advanced and revealed hitherto undocumented insights into moth flight behaviour. The illumination source comprised a 125 W mercury vapour light, operating in the visible and near ultraviolet wavelengths, mounted on top of a mobile telescopic mast at heights of 5 and 7.1 m, depending upon the experiment. Moths were imaged in early September, at night and in field conditions, using a ground level video camera with associated optics including a heated steering mirror, wide angle lens and an electronic image intensifier. Moth flight coordinates were recorded at a rate of 50 images per second (fields) and transferred to a computer using a light pen (the only non-automated operation in the processing sequence). Software extracted ground speed vectors and, by instantaneous subtraction of wind speed data supplied by fast-response anemometers, the airspeed vectors. Accumulated density profiles of the track data revealed that moths spend most of their time at a radius of between 40 and 50 cm from the source, and rarely fly directly above it, from close range. Furthermore, the proportion of insects caught by the trap as a proportion of the number influenced by the light (and within the field of view of the camera) was very low; of 1600 individual tracks recorded over five nights, a total of only 12 were caught. Although trap efficiency is strongly dependent on trap height, time of night, season, moonlight and weather, the data analysis confirmed that moths do not exhibit straightforward positive phototaxis. In general, trajectory patterns become more complex with reduced distance from the illumination, with higher recorded values of speeds and angular velocities. However, these characteristics are further qualified by the direction of travel of the insect; the highest accelerations tended to occur when the insect was at close range, but moving away from the source. Rather than manifesting a simple positive phototaxis, the trajectories were suggestive of disorientation. Based on the data and the complex behavioural response, mathematical models were developed that described ideal density distribution in calm air and light wind speed conditions. The models did not offer a physiological hypothesis regarding the behavioural changes, but rather were tools for quantification and prediction. Since the time that the system was developed, instrumentation, computers and software have advanced considerably, allowing much more to be achieved at a small fraction of the original cost. Nevertheless, the analytical tools remain useful for automated trajectory analysis of airborne insects.
Address School of Electrical and Electronic Engineering, University of Manchester,Manchester M13 9PL,UK
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0007-4853 ISBN Medium
Area Expedition Conference
Notes PMID:29745349 Approved no
Call Number GFZ @ kyba @ Serial 1895
Permanent link to this record
 

 
Author Czaczkes, T.J.; Bastidas-Urrutia, A.M.; Ghislandi, P.; Tuni, C.
Title Reduced light avoidance in spiders from populations in light-polluted urban environments Type Journal Article
Year 2018 Publication Die Naturwissenschaften Abbreviated Journal Naturwissenschaften
Volume 105 Issue 11-12 Pages 64
Keywords Animals
Abstract (down) Increased urbanisation is leading to a rise in light pollution. Light pollution can disrupt the behaviour and physiology of animals resulting in increased mortality. However, animals may also benefit from artificial light sources, as these may aggregate prey or signal suitable environments. For example, spiders are commonly seen congregating around artificial light sources. Changes in selective pressures engendered by urban environments are driving changes in urban organisms, driving better adaptation to these environments. Here, we ask whether urban populations of the synanthropic spider Steatoda triangulosa show different responses to light compared to rural populations. Egg-sacs from urban and rural populations were collected and incubated in a common garden setting, and the emerging spiderlings tested for light preference. While rural spiderlings avoided light (37% built webs in the light), urban spiderlings were indifferent to it (49% built webs in the light). Reduced light avoidance may benefit spiders through increased prey capture, increased movement into suitable habitats, or due to a release from selection pressure from visually hunting predators which do not enter buildings.
Address Department of Biology, Ludwig-Maximilians University of Munich, Grosshaderner Str. 2, 82152, Planegg-Martinsried, Germany
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0028-1042 ISBN Medium
Area Expedition Conference
Notes PMID:30377809 Approved no
Call Number GFZ @ kyba @ Serial 2140
Permanent link to this record