|   | 
Details
   web
Records
Author Grubisic, M.; Van Grunsven, R.H.A.; Kyba, C.C.M.; Manfrin, A.; Hölker, F.
Title Insect declines and agroecosystems: does light pollution matter? Type Journal Article
Year 2018 Publication Annals of Applied Biology Abbreviated Journal Ann. of Appl. Biol.
Volume 173 Issue 1 Pages 180-189
Keywords Animals; Ecology; Review
Abstract (up) Drastic declines in insect populations, ‘Ecological Armageddon’, have recently gained increased attention in the scientific community, and are commonly considered to be the consequence of large‐scale factors such as land‐use changes, use of pesticides, climate change and habitat fragmentation. Artificial light at night (ALAN), a pervasive global change that strongly impacts insects, remains, however, infrequently recognised as a potential contributor to the observed declines. Here, we provide a summary of recent evidence of impacts of ALAN on insects and discuss how these impacts can drive declines in insect populations in light‐polluted areas. ALAN can increase overall environmental pressure on insect populations, and this is particularly important in agroecosystems where insect communities provide important ecosystem services (such as natural pest control, pollination, conservation of soil structure and fertility and nutrient cycling), and are already under considerable environmental pressure. We discuss how changes in insect populations driven by ALAN and ALAN itself may hinder these services to influence crop production and biodiversity in agricultural landscapes. Understanding the contribution of ALAN and other factors to the decline of insects is an important step towards mitigation and the recovery of the insect fauna in our landscapes. In future studies, the role of increased nocturnal illumination also needs to be examined as a possible causal factor of insect declines in the ongoing ‘Ecological Armageddon’, along with the more commonly examined factors. Given the large scale of agricultural land use and the potential of ALAN to indirectly and directly impact crop production and biodiversity, a better understanding of effects of ALAN in agroecosystems is urgently needed.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 1939
Permanent link to this record
 

 
Author Brelsford, CC; Robson, TM
Title Blue light advances bud burst in branches of three deciduous tree species under short-day conditions Type Journal Article
Year 2018 Publication Trees Abbreviated Journal
Volume 32 Issue 4 Pages 1157-1164
Keywords Plants
Abstract (up) During spring, utilising multiple cues allow tree species from temperate and boreal regions to coordinate their bud burst and leaf out, at the right moment to capitalise on favourable conditions for photosynthesis. Whilst the effect of blue light (400–500 nm) has been shown to increase percentage bud burst of axillary shoots of Rosa sp., the effects of blue light on spring-time bud burst of deciduous tree species have not previously been reported. We tested the hypotheses that blue light would advance spring bud burst in tree species, and that late-successional species would respond more than early-successional species, whose bud burst is primarily determined by temperature. The bud development of Alnus glutinosa, Betula pendula, and Quercus robur branches, cut from dormant trees, was monitored under two light treatments of equal photosynthetically active radiation (PAR, 400–700 nm) and temperature, either with or without blue light, under controlled environmental conditions. In the presence of blue light, the mean time required to reach 50% bud burst was reduced by 3.3 days in Betula pendula, 6 days in Alnus glutinosa, and 6.3 days in Quercus robur. This result highlights the potential of the blue region of the solar spectrum to be used as an extra cue that could help plants to regulate their spring phenology, alongside photoperiod and temperature. Understanding how plants combine photoreceptor-mediated cues with other environmental cues such as temperature to control phenology is essential if we are to accurately predict how tree species might respond to climate change.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 1847
Permanent link to this record
 

 
Author Kuffer, M.; Pfeffer, K.; Sliuzas, R.; Taubenbock, H.; Baud, I.; van Maarseveen, M.
Title Capturing the Urban Divide in Nighttime Light Images From the International Space Station Type Journal Article
Year 2018 Publication IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing Abbreviated Journal IEEE J. Sel. Top. Appl. Earth Observations Remote Sensing
Volume 11 Issue 8 Pages 2578-2586
Keywords Remote Sensing
Abstract (up) Earlier studies utilizing coarse resolution DMSP-OLS nighttime light (NTL) imagery suggest a negative correlation between the amount of NTL and urban deprivation. The International Space Station (ISS) NTL images offer higher resolution images compared to DMSP-OLS or VIIRS images, allowing an analysis of intraurban NTL variations. The aim of this study is to examine the capacity of ISS images for analyzing the intraurban divide. NTL images of four cities (one African, two Asian, and one South American) have been processed and analyzed. The results show that deprived areas are generally the darker spots of built-up areas within cities, illustrating the urban divide in terms of access to street lighting. However, differences exist between cities: Deprived areas in the African city (Dar es Salaam) generally feature lower NTL emissions compared to the examined cities in South America (Belo Horizonte) and Asia (Mumbai and Ahmedabad). Beyond, variations exist in NTL emissions across deprived areas within cities. Deprived areas at the periphery show less NTL compared to central areas. Edges of deprived areas have higher NTL emissions compared to internal areas. NTL emission differences between types of deprived areas were detected. The correlation between ISS NTL images and population densities is weak; this can be explained by densely built-up deprived areas having less NTL compared to lower density formal areas. Our findings show ISS data complement other data to capture the urban divide between deprived and better-off areas and the need to consider socioeconomic conditions in estimating populations.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1939-1404 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 2178
Permanent link to this record
 

 
Author Singhal, R. K., Kumar, M., & Bose, B.
Title Ecophysiological Responses of Artificial Night Light Pollution in Plants Type Journal Article
Year 2018 Publication Russian Journal of Plant Physiology Abbreviated Journal
Volume Issue Pages
Keywords Plants
Abstract (up) Early in the 20th century, disparate human developmental processes culminate excess artificial light during night time and distort the phenological, physiological and ecological responses, which are sustained in the plants, animals and microorganism from millions of years. Earlier studies regarding artificial light (AL) during the night predominantly covered the drastic effects on animal systems. Although, drastic effects of AL during night time are enormous; therefore, the present topic is focused on the physiological and ecological consequences of artificial night light pollution (ANLP) on plant systems. In these consequences, most of the plant processes under ANLP are affected intensely and cause compelling changes in plant life cycle from germination to maturity. However, severe effects were observed in the case of pollination, photoreceptor signalling, flowering and microhabitats of plants. Along with drastic effects on ecology and environments, its relevance to human developmental processes cannot be avoided. Therefore, we need to equipoise between sustainable environment and steadily human development processes. Further, selection of plant/crop species, which are more responsive to ANLP, can minimize the ecological consequences of night light pollution. Likewise, changing artificial nightscape with the implication of new LEDs (Light Emitting Diodes) lightening policies like UJALA (www.ujala.gov.in), which are low cost, more durable, eco-friendly and less emitter of CO2, have potential to overcome the biodiversity threats, which arise due to old artificial lightening technology from decades. Hence, adopting new advance artificial lightening technology and understanding its impact on plant ecosystem will be a future challenge for plant biologist.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ intern @ Serial 2352
Permanent link to this record
 

 
Author Rowse, E.G.; Harris, S.; Jones, G.
Title Effects of dimming light-emitting diode street lights on light-opportunistic and light-averse bats in suburban habitats Type Journal Article
Year 2018 Publication Royal Society Open Science Abbreviated Journal R. Soc. open sci.
Volume 5 Issue 6 Pages 180205
Keywords Animals; Lighting
Abstract (up) Emerging lighting technologies provide opportunities for reducing carbon footprints, and for biodiversity conservation. In addition to installing light-emitting diode street lights, many local authorities are also dimming street lights. This might benefit light-averse bat species by creating dark refuges for these bats to forage and commute in human-dominated habitats. We conducted a field experiment to determine how light intensity affects the activity of the light-opportunistic Pipistrellus pipistrellus and light-averse bats in the genus Myotis. We used four lighting levels controlled under a central management system at existing street lights in a suburban environment (0, 25, 50 and 100% of the original output). Higher light intensities (50 and 100% of original output) increased the activity of light-opportunistic species but reduced the activity of light-averse bats. Compared to the unlit treatment, the 25% lighting level did not significantly affect either P. pipistrellus or Myotis spp. Our results suggest that it is possible to achieve a light intensity that provides both economic and ecological benefits by providing sufficient light for human requirements while not deterring light-averse bats.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2054-5703 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 1931
Permanent link to this record