|   | 
Details
   web
Records
Author Firebaugh, A.; Haynes, K.J.
Title Light pollution may create demographic traps for nocturnal insects Type Journal Article
Year 2018 Publication Basic and Applied Ecology Abbreviated Journal Basic and Applied Ecology
Volume 34 Issue Pages 118-125
Keywords Animals
Abstract (up) Light pollution impacts both intra- and inter-specific interactions, such as interactions between mates and predator–prey interactions. In mobile organisms attracted to artificial lights, the effect of light pollution on these interactions may be intensified. If organisms are repelled by artificial lights, effects of light pollution on intra- and inter-specific interactions may be diminished as organisms move away. However, organisms repelled by artificial lights would likely lose suitable habitat as light pollution expands. Thus, we investigated how light pollution affects both net attraction or repulsion of organisms and effects on intra- and inter-specific interactions. In manipulative field studies using fireflies, we found that Photuris versicolor and Photinus pyralis fireflies were lured to artificial (LED) light at night and that both species were less likely to engage in courtship dialogues (bioluminescent flashing) in light-polluted field plots. Light pollution also lowered the mating success of P. pyralis. P. versicolor is known to prey upon P. pyralis by mimicking the flash patterns of P. pyralis, but we did not find an effect of light pollution on Photuris–Photinus predator–prey interactions. Our study suggests, that for some nocturnal insects, light-polluted areas may act as demographic traps, i.e., areas where immigration exceeds emigration and inhibition of courtship dialogues and mating reduces reproduction. Examining multiple factors affecting population growth in concert is needed to understand and mitigate impacts of light pollution on wildlife.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1439-1791 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 1978
Permanent link to this record
 

 
Author Grenis, K.; Murphy, S.M.
Title Direct and indirect effects of light pollution on the performance of an herbivorous insect Type Journal Article
Year 2018 Publication Insect Science Abbreviated Journal Insect Sci
Volume 26 Issue 4 Pages 770-776
Keywords Animals; Plants
Abstract (up) Light pollution is a global disturbance with resounding impacts on a wide variety of organisms, but our understanding of these impacts is restricted to relatively few higher vertebrate species. We tested the direct effects of light pollution on herbivore performance as well as indirect effects mediated by host plant quality. We found that artificial light from streetlights alters plant toughness. Additionally, we found evidence of both direct and indirect effects of light pollution on the performance of an herbivorous insect, which indicates that streetlights can have cascading impacts on multiple trophic levels. Our novel findings suggest that light pollution can alter plant-insect interactions and thus may have important community-wide consequences.
Address Department of Biological Sciences, University of Denver, Denver, Colorado, USA
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1672-9609 ISBN Medium
Area Expedition Conference
Notes PMID:29425403 Approved no
Call Number GFZ @ kyba @ Serial 1865
Permanent link to this record
 

 
Author Azam, C.; Le Viol, I.; Bas, Y.; Zissis, G.; Vernet, A.; Julien, J.-F.; Kerbiriou, C.
Title Evidence for distance and illuminance thresholds in the effects of artificial lighting on bat activity Type Journal Article
Year 2018 Publication Landscape and Urban Planning Abbreviated Journal Landscape and Urban Planning
Volume 175 Issue Pages 123-135
Keywords Animals
Abstract (up) Light pollution is a major threat to biodiversity worldwide. There is a crucial need to elaborate artificial lighting recommendations to mitigate its impact on wildlife. In the present study, we investigated how streetlight spatial position and light trespass impacted the use of ecological corridors by transiting bats in anthropogenic landscapes. Through a paired, in situ experiment, we estimated how streetlight distance of impact and vertical and horizontal illuminance influenced the transiting activity of 6 species and 2 genera of bats. We selected 27 pairs composed of 1 lit site and 1 control unlit site in areas practicing either part-night or full-night lighting. We recorded bat activity at 0, 10, 25, 50 and 100 m, and measured vertical and horizontal light illuminance at the 5 distance steps (range = 0.1–30.2 lx). While streetlight attraction effect was mostly limited to a 10 m radius for Pipistrellus sp. and Nyctalus sp., streetlight avoidance was detected at up to 25 and 50 m for Myotis sp. and Eptesicus serotinus, respectively. Streetlight effects on Myotis sp. and Nyctalus sp. remained after lamps were turned-off. Illuminance had a negative effect on Myotis sp. below 1 lx, a mixed effect on E. serotinus, and a positive effect on the other species, although a peak of activity was observed between 1 and 5 lx for P. pipistrellus and N. leisleri. We recommend separating streetlights from ecological corridors by at least 50 m and avoiding vertical light trespass beyond 0.1 lx to ensure their use by light-sensitive bats.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0169-2046 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 1842
Permanent link to this record
 

 
Author Ges, X.; Bará, S.; García-Gil, M.; Zamorano, J.; Ribas, S.J.; Masana, E.
Title Light pollution offshore: Zenithal sky glow measurements in the mediterranean coastal waters Type Journal Article
Year 2018 Publication Journal of Quantitative Spectroscopy and Radiative Transfer Abbreviated Journal Journal of Quantitative Spectroscopy and Radiative Transfer
Volume 210 Issue Pages 91-100
Keywords
Abstract (up) Light pollution is a worldwide phenomenon whose consequences for the natural environment and the human health are being intensively studied nowadays. Most published studies address issues related to light pollution inland. Coastal waters, however, are spaces of high environmental interest, due to their biodiversity richness and their economical significance. The elevated population density in coastal regions is accompanied by correspondingly large emissions of artificial light at night, whose role as an environmental stressor is increasingly being recognized. Characterizing the light pollution levels in coastal waters is a necessary step for protecting these areas. At the same time, the marine surface environment provides a stage free from obstacles for measuring the dependence of the skyglow on the distance to the light polluting sources, and validating (or rejecting) atmospheric light propagation models. In this work we present a proof-of-concept of a gimbal measurement system that can be used for zenithal skyglow measurements on board both small boats and large vessels under actual navigation conditions. We report the results obtained in the summer of 2016 along two measurement routes in the Mediterranean waters offshore Barcelona, travelling 9 and 31.7 km away from the coast. The atmospheric conditions in both routes were different from the ones assumed for the calculation of recently published models of the anthropogenic sky brightness. They were closer in the first route, whose results approach better the theoretical predictions. The results obtained in the second route, conducted under a clearer atmosphere, showed systematic differences that can be traced back to two expected phenomena, which are a consequence of the smaller aerosol content: the reduction of the anthropogenic sky glow at short distances from the sources, and the slower decay rate of brightness with distance, which gives rise to a relative excess of brightness at large distances from the coastline.
Address Departament de Projectes d'Enginyeria i la Construcció, Universitat Politècnica de Catalunya/BARCELONATECH, Barcelona, Spain; salva.bara(at)usc.es
Corporate Author Thesis
Publisher Elsevierier Place of Publication Editor
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-4073 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ john @ Serial 1816
Permanent link to this record
 

 
Author Raap, T.; Pinxten, R.; Eens, M.
Title Cavities shield birds from effects of artificial light at night on sleep Type Journal Article
Year 2018 Publication Journal of Experimental Zoology. Part A, Ecological and Integrative Physiology Abbreviated Journal J Exp Zool A Ecol Integr Physiol
Volume 329 Issue 8-9 Pages 449-456
Keywords Animals
Abstract (up) Light pollution is an ever increasing worldwide problem disrupting animal behavior. Artificial light at night (ALAN) has been shown to affect sleep in wild birds. Even cavity-nesting bird species may be affected when sleeping inside their cavity. Correlational studies suggest that light from outside the cavity/nest box, for example from street lights, may affect sleep. We used an experimental design to study to what extent nest boxes shield animals from effects of ALAN on sleep. We recorded individual sleep behavior of free-living great tits (Parus major) that were roosting in dark nest boxes and exposed their nest box entrance to ALAN the following night (1.6 lux white LED light; a similar light intensity as was found at nest boxes near street lights). Their behavior was compared to that of control birds sleeping in dark nest boxes on both nights. Our experimental treatment did not affect sleep behavior. Sleep behavior of birds in the control group did not differ from that of individuals in the light treated group. Our results suggest that during winter cavities shield birds from some effects of ALAN. Furthermore, given that effects of ALAN and exposure to artificial light are species-, sex-, and season-dependent, it is important that studies using wild animals quantify individual exposure to light pollution, and be cautious in the interpretation and generalization of the effects, or lack thereof, from light pollution. Rigorous studies are necessary to examine individual light exposure and its consequences in cavity- and open-nesting birds.
Address Department of Biology, Behavioural Ecology and Ecophysiology Group, University of Antwerp, Wilrijk, Belgium
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2471-5638 ISBN Medium
Area Expedition Conference
Notes PMID:29781104 Approved no
Call Number GFZ @ kyba @ Serial 1912
Permanent link to this record