Records |
Author |
Kelsey, E.C.; Felis, J.J.; Czapanskiy, M.; Pereksta, D.M.; Adams, J. |
Title |
Collision and displacement vulnerability to offshore wind energy infrastructure among marine birds of the Pacific Outer Continental Shelf |
Type |
Journal Article |
Year |
2018 |
Publication |
Journal of Environmental Management |
Abbreviated Journal |
J Environ Manage |
Volume |
227 |
Issue |
|
Pages |
229-247 |
Keywords |
Animals |
Abstract  |
Marine birds are vulnerable to collision with and displacement by offshore wind energy infrastructure (OWEI). Here we present the first assessment of marine bird vulnerability to potential OWEI in the California Current System portion of the U.S. Pacific Outer Continental Shelf (POCS). Using population size, demography, life history, flight heights, and avoidance behavior for 62 seabird and 19 marine water bird species that occur in the POCS, we present and apply equations to calculate Population Vulnerability, Collision Vulnerability, and Displacement Vulnerability to OWEI for each species. Species with greatest Population vulnerability included those listed as species of concern (e.g., Least Tern [Sternula antillarum], Marbled Murrelet [Brachyramphus marmoratus], Pink-footed Shearwater [Puffinus creatopus]) and resident year-round species with small population sizes (e.g., Ashy Storm-Petrel [Oceanodroma homochroa], Brandt's Cormorant [Phalacrocorax penicillatus], and Brown Pelican [Pelecanus occidentalis]). Species groups with the greatest Collision Vulnerability included jaegers/skuas, pelicans, terns and gulls that spend significant amounts of time flying at rotor sweep zone height and don't show macro-avoidance behavior (avoidance of entire OWEI area). Species groups with the greatest Displacement Vulnerability show high macro-avoidance behavior and low habitat flexibility and included loons, grebes, sea ducks, and alcids. Using at-sea survey data from the southern POCS, we combined species-specific vulnerabilities described above with at-sea species densities to assess vulnerabilities spatially. Spatial vulnerability densities were greatest in areas with high species densities (e.g., near-shore areas) and locations where species with high vulnerability were found in abundance. Our vulnerability assessment helps understand and minimize potential impacts of OWEI infrastructure on marine birds in the POCS and could inform management decisions. |
Address |
U.S. Geological Survey Western Ecological Research Center, Santa Cruz, CA 95062, USA |
Corporate Author |
|
Thesis |
|
Publisher |
|
Place of Publication |
|
Editor |
|
Language |
English |
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
0301-4797 |
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Notes |
PMID:30195148 |
Approved |
no |
Call Number |
GFZ @ kyba @ |
Serial |
2122 |
Permanent link to this record |
|
|
|
Author |
Hänel, A.; Posch, T.; Ribas, S.J.; Aubé, M.; Duriscoe, D.; Jechow, A.; Kolláth, Z.; Lolkema, D.E.; Moore, C.; Schmidt, N.; Spoelstra, H.; Wuchterl, G.; Kyba, C.C.M. |
Title |
Measuring night sky brightness: methods and challenges |
Type |
Journal Article |
Year |
2018 |
Publication |
Journal of Quantitative Spectroscopy and Radiative Transfer |
Abbreviated Journal |
Journal of Quantitative Spectroscopy and Radiative Transfer |
Volume |
205 |
Issue |
|
Pages |
278-290 |
Keywords |
skyglow |
Abstract  |
Measuring the brightness of the night sky has become an increasingly important topic in recent years, as artificial lights and their scattering by the Earthâ??s atmosphere continue spreading around the globe. Several instruments and techniques have been developed for this task. We give an overview of these, and discuss their strengths and limitations. The different quantities that can and should be derived when measuring the night sky brightness are discussed, as well as the procedures that have been and still need to be defined in this context. We conclude that in many situations, calibrated consumer digital cameras with fisheye lenses provide the best relation between ease-of-use and wealth of obtainable information on the night sky. While they do not obtain full spectral information, they are able to sample the complete sky in a period of minutes, with colour information in three bands. This is important, as given the current global changes in lamp spectra, changes in sky radiance observed only with single band devices may lead to incorrect conclusions regarding long term changes in sky brightness. The acquisition of all-sky information is desirable, as zenith-only information does not provide an adequate characterization of a site. Nevertheless, zenith-only single-band one-channel devices such as the â??Sky Quality Meterâ? continue to be a viable option for long-term studies of night sky brightness and for studies conducted from a moving platform. Accurate interpretation of such data requires some understanding of the colour composition of the sky light. We recommend supplementing long-term time series derived with such devices with periodic all-sky sampling by a calibrated camera system and calibrated luxmeters or luminance meters. |
Address |
|
Corporate Author |
|
Thesis |
|
Publisher |
|
Place of Publication |
|
Editor |
|
Language |
|
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
0022-4073 |
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Notes |
|
Approved |
no |
Call Number |
LoNNe @ kyba @; GFZ @ kyba @ |
Serial |
1731 |
Permanent link to this record |
|
|
|
Author |
Buonfiglio, D.; Parthimos, R.; Dantas, R.; Cerqueira Silva, R.; Gomes, G.; Andrade-Silva, J.; Ramos-Lobo, A.; Amaral, F.G.; Matos, R.; Sinesio, J.J.; Motta-Teixeira, L.C.; Donato, J.J.; Reiter, R.J.; Cipolla-Neto, J. |
Title |
Melatonin Absence Leads to Long-Term Leptin Resistance and Overweight in Rats |
Type |
Journal Article |
Year |
2018 |
Publication |
Frontiers in Endocrinology |
Abbreviated Journal |
Front Endocrinol (Lausanne) |
Volume |
9 |
Issue |
|
Pages |
122 |
Keywords |
Human health |
Abstract  |
Melatonin (Mel), a molecule that conveys photoperiodic information to the organisms, is also involved in the regulation of energy homeostasis. Mechanisms of action of Mel in the energy balance remain unclear; herein we investigated how Mel regulates energy intake and expenditure to promote a proper energy balance. Male Wistar rats were assigned to control, control + Mel, pinealectomized (PINX) and PINX + Mel groups. To restore a 24-h rhythm, Mel (1 mg/kg) was added to the drinking water exclusively during the dark phase for 13 weeks. After this treatment period, rats were subjected to a 24-h fasting test, an acute leptin responsiveness test and cold challenge. Mel treatment reduced food intake, body weight, and adiposity. When challenged to 24-h fasting, Mel-treated rats also showed reduced hyperphagia when the food was replaced. Remarkably, PINX rats exhibited leptin resistance; this was likely related to the capacity of leptin to affect body weight, food intake, and hypothalamic signal-transducer and activator of transcription 3 phosphorylation, all of which were reduced. Mel treatment restored leptin sensitivity in PINX rats. An increased hypothalamic expression of agouti-related peptide (Agrp), neuropeptide Y, and Orexin was observed in the PINX group while Mel treatment reduced the expression of Agrp and Orexin. In addition, PINX rats presented lower UCP1 protein levels in the brown adipose tissue and required higher tail vasoconstriction to get a proper thermogenic response to cold challenge. Our findings reveal a previously unrecognized interaction of Mel and leptin in the hypothalamus to regulate the energy balance. These findings may help to explain the high incidence of metabolic diseases in individuals exposed to light at night. |
Address |
Department of Physiology and Biophysics, Institute of Biomedical Sciences-I, University of Sao Paulo (USP), Sao Paulo, Brazil |
Corporate Author |
|
Thesis |
|
Publisher |
|
Place of Publication |
|
Editor |
|
Language |
English |
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
1664-2392 |
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Notes |
PMID:29636725; PMCID:PMC5881424 |
Approved |
no |
Call Number |
NC @ ehyde3 @ |
Serial |
2093 |
Permanent link to this record |
|
|
|
Author |
Ostrin, L.A. |
Title |
Ocular and systemic melatonin and the influence of light exposure |
Type |
Journal Article |
Year |
2018 |
Publication |
Clinical & Experimental Optometry |
Abbreviated Journal |
Clin Exp Optom |
Volume |
in press |
Issue |
|
Pages |
in press |
Keywords |
Vision; Review; Human Health |
Abstract  |
Melatonin is a neurohormone known to modulate a wide range of circadian functions, including sleep. The synthesis and release of melatonin from the pineal gland is heavily influenced by light stimulation of the retina, particularly through the intrinsically photosensitive retinal ganglion cells. Melatonin is also synthesised within the eye, although to a much lesser extent than in the pineal gland. Melatonin acts directly on ocular structures to mediate a variety of diurnal rhythms and physiological processes within the eye. The interactions between melatonin, the eye, and visual function have been the subject of a considerable body of recent research. This review is intended to provide a broad introduction for eye-care practitioners and researchers to the topic of melatonin and the eye. The first half of the review describes the anatomy and physiology of melatonin production: how visual inputs affect the pineal production of melatonin; how melatonin is involved in a variety of diurnal rhythms within the eye, including photoreceptor disc shedding, neuronal sensitivity, and intraocular pressure control; and melatonin production and physiological roles in retina, ciliary body, lens and cornea. The second half of the review describes clinical implications of light/melatonin interactions. These include light exposure and photoreceptor contributions in melatonin suppression, leading to consideration of how blue blockers, cataract, and light therapy might affect sleep and mood in patients. Additionally, the interactions between melatonin, sleep and refractive error development are discussed. A better understanding of environmental factors that affect melatonin and subsequent effects on physiological processes will allow clinicians to develop treatments and recommend modifiable behaviours to improve sleep, increase daytime alertness, and regulate ocular and systemic processes related to melatonin. |
Address |
University of Houston College of Optometry, Houston, Texas, USA |
Corporate Author |
|
Thesis |
|
Publisher |
|
Place of Publication |
|
Editor |
|
Language |
English |
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
0816-4622 |
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Notes |
PMID:30074278 |
Approved |
no |
Call Number |
GFZ @ kyba @ |
Serial |
1986 |
Permanent link to this record |
|
|
|
Author |
Shima, J.S.; Swearer, S.E. |
Title |
Moonlight enhances growth in larval fish |
Type |
Journal Article |
Year |
2018 |
Publication |
Ecology |
Abbreviated Journal |
Ecology |
Volume |
in press |
Issue |
|
Pages |
|
Keywords |
Animals; Moonlight |
Abstract  |
Moonlight mediates trophic interactions and shapes the evolution of life-history strategies for nocturnal organisms. Reproductive cycles and important life-history transitions for many marine organisms coincide with moon phases, but few studies consider the effects of moonlight on pelagic larvae at sea. We evaluated effects of moonlight on growth of pelagic larvae of a temperate reef fish using 'master chronologies' of larval growth constructed from age-independent daily increment widths recorded in otoliths of 321 individuals. We found that daily growth rates of fish larvae were enhanced by lunar illumination after controlling for the positive influence of temperature and the negative influence of cloud cover. Collectively, these results indicate that moonlight enhances growth rates of larval fish. This pattern is likely the result of moonlight's combined effects on foraging efficiency and suppression of diel migrations of mesopelagic predators, and has the potential to drive evolution of marine life histories. This article is protected by copyright. All rights reserved. |
Address |
School of BioSciences, University of Melbourne, Melbourne, 3010, Australia |
Corporate Author |
|
Thesis |
|
Publisher |
|
Place of Publication |
|
Editor |
|
Language |
English |
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
0012-9658 |
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Notes |
PMID:30422325 |
Approved |
no |
Call Number |
GFZ @ kyba @ |
Serial |
2059 |
Permanent link to this record |