|   | 
Details
   web
Records
Author Holveck, M.-J.; Grégoire, A.; Doutrelant, C.; Lambrechts, M.M.
Title Nest height is affected by lamppost lighting proximity in addition to nestbox size in urban great tits Type Journal Article
Year 2018 Publication Journal of Avian Biology Abbreviated Journal J Avian Biol
Volume in press Issue Pages
Keywords Animals
Abstract (up) Both natural and artificial light have proximate influences on many aspects of avian biology, physiology and behaviour. To date artificial light at night is mostly considered as being a nuisance disrupting for instance sleep and reproduction of diurnal species. Here, we investigate if lamppost night lighting affects cavity‐nesting bird species inside their breeding cavity. Nest height in secondary cavity‐nesting species is the result of trade‐offs between several selective forces. Predation is the prevailing force leading birds to build thin nests to increase the distance towards the entrance hole. A thin nest may also limit artificial light exposure at night. Yet, a minimum level of daylight inside nesting cavities is necessary for adequate visual communication and/or offspring development. Against this background, we hypothesised that avian nest‐building behaviour varies in response to a change in night lighting. We monitored nest height of urban great tits (Parus major) during six years and found that it varied with artificial light proximity. The birds built thinner nests inside nestboxes of various sizes in response to increasing lamppost night light availability at the nest. In large nestboxes, the nests were also thinner when a lamppost was present in the territory. Whether this relationship between artificial night lighting and nest height reflects a positive or negative effect of urbanisation is discussed in the light of recent experimental studies conducted in rural populations by other research groups.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0908-8857 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 2062
Permanent link to this record
 

 
Author Rybnikova, N.; Stevens, R.G.; Gregorio, D.I.; Samociuk, H.; Portnov, B.A.
Title Kernel density analysis reveals a halo pattern of breast cancer incidence in Connecticut Type Journal Article
Year 2018 Publication Spatial and Spatio-temporal Epidemiology Abbreviated Journal Spatial and Spatio-temporal Epidemiology
Volume 26 Issue Pages 143-151
Keywords Human Health; Remote Sensing
Abstract (up) Breast cancer (BC) incidence rates in Connecticut are among the highest in the United States, and are unevenly distributed within the state. Our goal was to determine whether artificial light at night (ALAN) played a role. Using BC records obtained from the Connecticut Tumor Registry, we applied the double kernel density (DKD) estimator to produce a continuous relative risk surface of a disease throughout the State. A multi-variate analysis compared DKD and census track estimates with population density, fertility rate, percent of non-white population, population below poverty level, and ALAN levels. The analysis identified a “halo” geographic pattern of BC incidence, with the highest rates of the disease observed at distances 5-15 km from the state's major cities. The “halo” was of high-income communities, with high ALAN, located in suburban fringes of the state's main cities.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1877-5845 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 1961
Permanent link to this record
 

 
Author Grubisic, M.
Title Waters under Artificial Lights: Does Light Pollution Matter for Aquatic Primary Producers? Type Journal Article
Year 2018 Publication Limnology and Oceanography Bulletin Abbreviated Journal
Volume 27 Issue 3 Pages 76-81
Keywords Ecology
Abstract (up) Bright night lights have become a symbol of development and prosperity in the modern world. But have you ever wondered how artificial light at night (ALAN) may be affecting living beings in our cities, and how it may be affecting us? As artificial illumination is transforming nocturnal environments around the world, light pollution associated with its use is becoming a topic of increasing interest in the scientific and public communities. Light pollution disrupts natural light regimes in many regions of the world, raising concerns about ecological and health impacts of this novel anthropogenic pressure. Most obviously, ALAN can influence night‐active animals in urban and suburban areas, and most research in this growing field focuses on terrestrial organisms such as bats, birds, and insects. Effects on aquatic ecosystems are much less known. In particular, aquatic primary producers, such as microalgae, cyanobacteria, and plants, have rarely been studied despite their critical positioning in the base of aquatic food webs and the fundamental role that light plays in their ecology. For primary producers, light is a key source of both energy and environmental information; it influences their growth, production, and community structure. ALAN has therefore a large potential to influence their communities and induce bottom‐up changes to aquatic ecosystems and ecosystem functions.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 1966
Permanent link to this record
 

 
Author Kozaki, Tomoaki; Taketomi, Ryunosuke; Hidaka ,Yuki; Ida, Nagisa; Yasuda, Takeo
Title Preventive Effect of Morning Bluish LED Light on Light-induced Melatonin Suppression at Night Type Journal Article
Year 2018 Publication Journal of Science and Technology in Lighting Abbreviated Journal
Volume 41 Issue Pages 206-210
Keywords Human Health
Abstract (up) Bright nocturnal light has been known to suppress melatonin secretion. However, bright light exposure during daytime might reduce light-induced melatonin suppression (LIMS) at night. This study aims to evaluate the effect of high correlated color temperature LED light during daytime on LIMS. Male participants were exposed to different light conditions for 3 h in the morning (09:00â??12:00). The light conditions were dim light (<10 lx), 125 lx high correlated color temperature (CCT) LED light, and 250 lx high CCT LED light. The subjects were then exposed to bright light (white light, 300 lx) for 1.5 h at night (01:00â??02:30). Saliva samples were taken before (01:00) and after (02:30) exposure for evaluation of melatonin secretion. There were no significant differences in melatonin secretion before and after night-time light exposure on the 125 lx and 250 lx morning light conditions. Since these light intensities were almost equal to those in our previous study, the high CCT LED light might be appropriate for certain work places (e.g., hospitals and underground spaces), contributing to the reduction of our health risk and also saving energy.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number LoNNe @ kyba @ Serial 1785
Permanent link to this record
 

 
Author Lopes, A.C.C.; Villacorta-Correa, M.A.; Carvalho, T.B.
Title Lower light intensity reduces larval aggression in matrinxã, Brycon amazonicus Type Journal Article
Year 2018 Publication Behavioural Processes Abbreviated Journal Behavioural Processes
Volume 151 Issue Pages 62-66
Keywords Animals
Abstract (up) Brycon amazonicus shows a high frequency of aggressive behavior, which can be a limiting factor in intensive farming systems. Environmental changes can modulate the social interactions of fish and reduce aggression during the different stages of production. Groups of three larvae at 12&#8239;h after hatching (HAH) were subjected to different levels of light intensity: low (17&#8239;±&#8239;3&#8239;lx), intermediate (204&#8239;±&#8239;12.17&#8239;lx) and high (1,613.33&#8239;±&#8239;499.03&#8239;lx), with eight replicates for each level. The lower light intensity reduced the frequency of aggressive interactions and locomotor activity exhibited by the animals. Based on these results, light intensity modulates aggression in B. amazonicus larvae. Manipulation of this factor could improve the social conditions of this species during farming and contribute to the development of new production technologies.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0376-6357 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number LoNNe @ kyba @ Serial 1810
Permanent link to this record