|   | 
Details
   web
Records
Author Lu, Y.; Coops, N.C.
Title Bright lights, big city: Causal effects of population and GDP on urban brightness Type Journal Article
Year 2018 Publication PloS one Abbreviated Journal PLoS One
Volume 13 Issue 7 Pages e0199545
Keywords Remote Sensing
Abstract (up) Cities are arguably both the cause, and answer, to societies' current sustainability issues. Urbanization is the interplay between a city's physical growth and its socio-economic development, both of which consume a substantial amount of energy and resources. Knowledge of the underlying driver(s) of urban expansion facilitates not only academic research but, more importantly, bridges the gap between science, policy drafting, and practical urban management. An increasing number of researchers are recognizing the benefits of innovative remotely sensed datasets, such as nighttime lights data (NTL), as a proxy to map urbanization and subsequently examine the driving socio-economic variables in cities. We further these approaches, by taking a trans-pacific view, and examine how an array of socio-economic ind0icators of 25 culturally and economically important urban hubs relate to long term patterns in NTL for the past 21 years. We undertake a classic econometric approach-panel causality tests which allow analysis of the causal relationships between NTL and socio-economic development across the region. The panel causality test results show a contrasting effect of population and gross domestic product (GDP) on NTL in fast, and slowly, changing cities. Information derived from this study quantitatively chronicles urban activities in the pan-Pacific region and potentially offers data for studies that spatially track local progress of sustainable urban development goals.
Address Integrated Remote Sensing Studio, Forest Recourses Management, University of British Columbia, Vancouver, BC, Canada
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1932-6203 ISBN Medium
Area Expedition Conference
Notes PMID:29995923 Approved no
Call Number GFZ @ kyba @ Serial 1963
Permanent link to this record
 

 
Author Froidevaux, J.S.P.; Fialas, P.C.; Jones, G.; Pettorelli, N.; Merchant, N.
Title Catching insects while recording bats: impacts of light trapping on acoustic sampling Type Journal Article
Year 2018 Publication Remote Sensing in Ecology and Conservation Abbreviated Journal Remote Sens Ecol Conserv
Volume 4 Issue 3 Pages 240-247
Keywords Animals
Abstract (up) Collecting information on bat prey availability usually involves the use of light traps to capture moths and flies that constitute the main prey items of most insectivorous bats. However, despite the recent awareness on the adverse effects of light on bats, little is known regarding the potential impacts of light trapping on the bat sampling outcomes when passive acoustic sampling and light trapping are implemented simultaneously. Using a before–after experimental design that involved the installation of a 6 W actinic light trap 1 m away from the bat detector, we tested the predictions that (1) slow‐flying bat species will be less active when the light trap is present, while the opposite will be true for fast‐flying species; and (2) bat species richness will be lower at lit conditions compared to dark ones. Our results suggest that the use of light traps in combination with bat detectors may considerably influence the outcomes of acoustic sampling. Although the activity of fast‐flying bat species did not differ between the two treatments, we found that the activity of slow‐flying ones such as Rhinolophus ferrumequinum and Rhinolophus hipposideros decreased significantly at lit conditions. Furthermore, we recorded fewer bat species when the light trap was deployed. To overcome this issue, we strongly recommend either (1) placing light traps at a considerable distance from bat detectors; or (2) using light traps during the night that follows the bat sampling if sampling needs to be at the same position; or (3) deploying non‐attractant insect traps such as Malaise traps if Lepidoptera is not the main order targeted.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2056-3485 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number NC @ ehyde3 @ Serial 2092
Permanent link to this record
 

 
Author Huang, Z.; Liu, Q.; Westland, S.; Pointer, M.; Luo, M.R.; Xiao, K.
Title Light dominates colour preference when correlated colour temperature differs Type Journal Article
Year 2018 Publication Lighting Research & Technology Abbreviated Journal Lighting Research & Technology
Volume 50 Issue 7 Pages 995-1012
Keywords Vision; Lighting
Abstract (up) Colour preference for lighting is generally influenced by three kinds of contextual factors, the light, the object and the observer. In this study, a series of psychophysical experiments were conducted to investigate and compare the effect of certain factors on colour preference, including spectral power distribution of light, lighting application, observers’ personal colour preference, regional cultural difference and gender difference. LED lights with different correlated colour temperatures were used to illuminate a wide selection of objects. Participant response was quantified by a 7-point rating method or a 5-level ranking method. It was found that the preferred illumination for different objects exhibited a similar trend and that the influence of light was significantly stronger than that of other factors. Therefore, we conclude that the light itself (rather than, e.g. the objects that are viewed) is the most crucial factor for predicting which light, among several candidates with different correlated colour temperatures, an observer will prefer. In addition, some of the gamut-based colour quality metrics correlated well with the participants’ response, which corroborates the view that colour preference is strongly influenced by colour saturation. The familiarity of the object affects the ratings for each experiment while the colour of the objects also influences colour preference.
Address School of Printing and Packaging, Wuhan University, Luoyu Road 129, Wuhan, China; liuqiang(at)whu.edu.cn
Corporate Author Thesis
Publisher SAGE Place of Publication Editor
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1477-1535 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ john @ Serial 2256
Permanent link to this record
 

 
Author Chen, Y.; Cheng, M.; Su, T.; Gao, T.; Yu, W.
Title Constant light exposure aggravates POMC-mediated muscle wasting associated with hypothalamic alteration of circadian clock and SIRT1 in endotoxemia rats Type Journal Article
Year 2018 Publication Biochemical and Biophysical Research Communications Abbreviated Journal Biochem Biophys Res Commun
Volume in press Issue Pages
Keywords Animals
Abstract (up) Constant light exposure is widespread in the intensive care unit (ICU) and could increase the rate of brain dysfunction as delirium and sleep disorders in critical patients. And the activation of hypothalamic neuropeptides is proved to play a crucial role in regulating hypercatabolism, especially skeletal muscle wasting in critical patients, which could lead to serious complications and poor prognosis. Here we investigated the hypothesis that constant light exposure could aggravate skeletal muscle wasting in endotoxemia rats and whether it was associated with alterations of circadian clock and hypothalamic proopiomelanocortin(POMC) expression. Fifty-four adult male Sprague-Dawley rats were intraperitoneally injected with lipopolysaccharide(LPS) or saline, subjected to constant light or a 12:12h light-dark cycle for 7 days. On day 8, rats were sacrificed across six time points in 24h and hypothalamus tissues and skeletal muscle were obtained. Rates of muscle wasting were measured by 3-methylhistidine(3-MH) and tyrosine release as well as expression of two muscle atrophic genes, muscle ring finger 1(MuRF-1) and muscle atrophy F-box(MAFbx). The expression of circadian clock genes, silent information regulator 1(SIRT1), POMC and hypothalamic inflammatory cytokines were also detected. Results showed that LPS administration significantly increased hypothalamic POMC expression, inflammatory cytokine levels and muscle wasting rates. Meanwhile constant light exposure disrupted the circadian rhythm, declined the expression of SIRT1 as well as aggravated hypothalamic POMC overexpression and skeletal muscle wasting in rats with endotoxemia. Taken together, the results demonstrated that constant light exposure could aggravate POMC-mediated skeletal muscle wasting in endotoxemia rats, which is associated with alteration of circadian clocks and SIRT1 in the hypothalamus.
Address Department of Intensive Care Unit, The Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, 210008, China. Electronic address: yudrnj2@163.com
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0006-291X ISBN Medium
Area Expedition Conference
Notes PMID:30528733 Approved no
Call Number GFZ @ kyba @ Serial 2134
Permanent link to this record
 

 
Author Galadí-Enríquez, D.
Title Beyond CCT: The spectral index system as a tool for the objective, quantitative characterization of lamps Type Journal Article
Year 2018 Publication Journal of Quantitative Spectroscopy and Radiative Transfer Abbreviated Journal JQSRT
Volume 206 Issue Pages 399-408
Keywords Lighting
Abstract (up) Correlated color temperature (CCT) is a semi-quantitative system that roughly describes the spectra of lamps. This parameter gives the temperature (measured in kelvins) of the black body that would show the hue more similar to that of the light emitted by the lamp. Modern lamps for indoor and outdoor lighting display many spectral energy distributions, most of them extremely different to those of black bodies, what makes CCT to be far from a perfect descriptor from the physical point of view. The spectral index system presented in this work provides an accurate, objective, quantitative procedure to characterize the spectral properties of lamps, with just a few numbers. The system is an adaptation to lighting technology of the classical procedures of multi-band astronomical photometry with wide and intermediate-band filters. We describe the basic concepts and we apply the system to a representative set of lamps of many kinds. The results lead to interesting, sometimes surprising conclusions. The spectral index system is extremely easy to implement from the spectral data that are routinely measured at laboratories. Thus, including this kind of computations in the standard protocols for the certification of lamps will be really straightforward, and will enrich the technical description of lighting devices.
Address
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-4073 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 1835
Permanent link to this record