|   | 
Details
   web
Records
Author Flores, D.E.F.L.; Oda, G.A.
Title Novel Light/Dark Regimens with Minimum Light Promote Circadian Disruption: Simulations with a Model Oscillator Type Journal Article
Year 2018 Publication Journal of Biological Rhythms Abbreviated Journal J Biol Rhythms
Volume in press Issue Pages
Keywords Animals
Abstract Artificial lab manipulation of LD cycles has enabled simulations of the disruptive conditions found in modern human societies, such as jet-lag, night-work and light at night. New techniques using animal models have been developed, and these can greatly improve our understanding of circadian disruption. Some of these techniques, such as in vivo bioluminescence assays, require minimum external light. This requirement is challenging because the usual lighting protocols applied in circadian desynchronization experiments rely on considerable light input. Here, we present a novel LD regimen that can disrupt circadian rhythms with little light per day, based on computer simulations of a model limit-cycle oscillator. The model predicts that a single light pulse per day has the potential to disturb rhythmicity when pulse times are randomly distributed within an interval. Counterintuitively, the rhythm still preserves an underlying 24-h periodicity when this interval is as large as 14 h, indicating that day/night cues are still detectable. Only when pulses are spread throughout the whole 24-h day does the rhythm lose any day-to-day period correlation. In addition, the model also reveals that stronger pulses of brighter light should exacerbate the disrupting effects. We propose the use of this LD schedule-which would be compatible with the requirements of in vivo bioluminescence assays-to help understand circadian disruption and associated illnesses.
Address (down) Instituto de Biociencias, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0748-7304 ISBN Medium
Area Expedition Conference
Notes PMID:30595077 Approved no
Call Number GFZ @ kyba @ Serial 2146
Permanent link to this record
 

 
Author Zerbini, G.; Kantermann, T.; Merrow, M.
Title Strategies to decrease social jetlag: Reducing evening blue light advances sleep and melatonin Type Journal Article
Year 2018 Publication The European Journal of Neuroscience Abbreviated Journal Eur J Neurosci
Volume in press Issue Pages
Keywords Human Health
Abstract The timing of sleep is under the control of the circadian clock, which uses light to entrain to the external light-dark cycle. A combination of genetic, physiological and environmental factors produces individual differences in chronotype (entrained phase as manifest in sleep timing). A mismatch between circadian and societal (e.g., work) clocks leads to a condition called social jetlag, which is characterized by changing sleep times over work and free days and accumulation of sleep debt. Social jetlag, which is prevalent in late chronotypes, has been related to several health issues. One way to reduce social jetlag would be to advance the circadian clock via modifications of the light environment. We thus performed two intervention field studies to describe methods for decreasing social jetlag. One study decreased evening light exposure (via blue-light-blocking glasses) and the other used increased morning light (via the use of curtains). We measured behaviour as well as melatonin; the latter in order to validate that behaviour was consistent with this neuroendocrinological phase marker of the circadian clock. We found that a decrease in evening blue light exposure led to an advance in melatonin and sleep onset on workdays. Increased morning light exposure advanced neither melatonin secretion nor sleep timing. Neither protocol led to a significant change in social jetlag. Despite this, our findings show that controlling light exposure at home can be effective in advancing melatonin secretion and sleep, thereby helping late chronotypes to better cope with early social schedules.
Address (down) Institute of Medical Psychology, LMU Munich, Munich, Germany
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0953-816X ISBN Medium
Area Expedition Conference
Notes PMID:30506899 Approved no
Call Number GFZ @ kyba @ Serial 2138
Permanent link to this record
 

 
Author Ouyang, J.Q.; Davies, S.; Dominoni, D.
Title Hormonally mediated effects of artificial light at night on behavior and fitness: linking endocrine mechanisms with function Type Journal Article
Year 2018 Publication The Journal of Experimental Biology Abbreviated Journal J Exp Biol
Volume 221 Issue Pt 6 Pages
Keywords Human Health; Alan; Glucocorticoid; Hormones; Light pollution; Melatonin; Metabolism; Sleep; Stress; Thyroid; Urban ecology
Abstract Alternation between day and night is a predictable environmental fluctuation that organisms use to time their activities. Since the invention of artificial lighting, this predictability has been disrupted and continues to change in a unidirectional fashion with increasing urbanization. As hormones mediate individual responses to changing environments, endocrine systems might be one of the first systems affected, as well as being the first line of defense to ameliorate any negative health impacts. In this Review, we first highlight how light can influence endocrine function in vertebrates. We then focus on four endocrine axes that might be affected by artificial light at night (ALAN): pineal, reproductive, adrenal and thyroid. Throughout, we highlight key findings, rather than performing an exhaustive review, in order to emphasize knowledge gaps that are hindering progress on proposing impactful and concrete plans to ameliorate the negative effects of ALAN. We discuss these findings with respect to impacts on human and animal health, with a focus on the consequences of anthropogenic modification of the night-time environment for non-human organisms. Lastly, we stress the need for the integration of field and lab experiments as well as the need for long-term integrative eco-physiological studies in the rapidly expanding field of light pollution.
Address (down) Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow G12 8QQ, UK;
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-0949 ISBN Medium
Area Expedition Conference
Notes PMID:29545373 Approved no
Call Number IDA @ john @ Serial 1817
Permanent link to this record
 

 
Author Taufique, S.K.T.; Prabhat, A.; Kumar, V.
Title Illuminated night alters hippocampal gene expressions and induces depressive-like responses in diurnal corvids Type Journal Article
Year 2018 Publication The European Journal of Neuroscience Abbreviated Journal Eur J Neurosci
Volume in press Issue Pages in press
Keywords Animals
Abstract Artificial light at night induces circadian disruptions and causes cognitive impairment and mood disorders; yet very little is known about the neural and molecular correlates of these effects in diurnal animals. We manipulated the night environment and examined cellular and molecular changes in hippocampus, the brain region involved in cognition and mood, of Indian house crows (Corvus splendens) exposed to 12 h light (150 lux): 12 h darkness (0 lux). Diurnal corvids are an ideal model species with cognitive abilities at par with mammals. Dim light (6 lux) at night (dLAN) altered daily activity:rest pattern, reduced sleep and induced depressive-like responses (decreased eating and self-grooming, self-mutilation and reduced novel object exploration); return to an absolute dark night reversed these negative effects. dLAN suppressed nocturnal melatonin levels, however, diurnal corticosterone levels were unaffected. Concomitant reduction of immunoreactivity for DCX and BDNF suggested dLAN-induced suppression of hippocampal neurogenesis and compromised neuronal health. dLAN also negatively influenced hippocampal expression of genes associated with depressive-like responses (bdnf, il-1beta, tnfr1, nr4a2), but not of those associated with neuronal plasticity (egr1, creb, syngap, syn2, grin2a, grin2b), cellular oxidative stress (gst, sod3, cat1) and neuronal death (caspase2, caspase3, foxo3). Furthermore, we envisaged the role of BDNF and showed epigenetic modification of bdnf gene by decreased histone H3 acetylation and increased hdac4 expression under dLAN. These results demonstrate transcriptional and epigenetic bases of dLAN-induced negative effects in diurnal crows, and provide insights into the risks of exposure to illuminated nights to animals including humans in an urban setting. This article is protected by copyright. All rights reserved.
Address (down) IndoUS Center for Biological Timing Department of Zoology, University of Delhi, Delhi, 110 007, India
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0953-816X ISBN Medium
Area Expedition Conference
Notes PMID:30218624 Approved no
Call Number GFZ @ kyba @ Serial 2010
Permanent link to this record
 

 
Author Mard, J.; Di Baldassarre, G.; Mazzoleni, M.
Title Nighttime light data reveal how flood protection shapes human proximity to rivers Type Journal Article
Year 2018 Publication Science Advances Abbreviated Journal Sci Adv
Volume 4 Issue 8 Pages eaar5779
Keywords Remote Sensing
Abstract To understand the spatiotemporal changes of flood risk, we need to determine the way in which humans adapt and respond to flood events. One adaptation option consists of resettling away from flood-prone areas to prevent or reduce future losses. We use satellite nighttime light data to discern the relationship between long-term changes in human proximity to rivers and the occurrence of catastrophic flood events. Moreover, we explore how these relationships are influenced by different levels of structural flood protection. We found that societies with low protection levels tend to resettle further away from the river after damaging flood events. Conversely, societies with high protection levels show no significant changes in human proximity to rivers. Instead, such societies continue to rely heavily on structural measures, reinforcing flood protection and quickly resettling in flood-prone areas after a flooding event. Our work reveals interesting aspects of human adaptation to flood risk and offers key insights for comparing different risk reduction strategies. In addition, this study provides a framework that can be used to further investigate human response to floods, which is relevant as urbanization of floodplains continues and puts more people and economic assets at risk.
Address (down) IHE Delft Institute for Water Education, 2611 AX Delft, Netherlands
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2375-2548 ISBN Medium
Area Expedition Conference
Notes PMID:30140738; PMCID:PMC6105301 Approved no
Call Number GFZ @ kyba @ Serial 1989
Permanent link to this record