toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Obayashi, K.; Saeki, K.; Kurumatani, N. url  doi
openurl 
  Title Obayashi et al. Respond to “Light at Night Predicts Depression—What Next?” Type Journal Article
  Year 2018 Publication American Journal of Epidemiology Abbreviated Journal  
  Volume 187 Issue 3 Pages 439-440  
  Keywords Commentary; Human Health  
  Abstract Our research includes some strengths and limitations. The most important strength is objective measurement of light at night (LAN) intensity using a bedside light meter. Most previous studies evaluating the association between LAN and health outcomes have assessed indoor LAN levels using a self-reported questionnaire or outdoor LAN levels using satellite data; however, self-reported indoor LAN levels has not yet been validated with objective measurement and outdoor LAN levels are surrogates for an individual LAN exposure. The second strength of our study includes its longitudinal design using multivariable methods to adjust for confounders, which indicated LAN exposure may be a cause of the incidence of depressive symptoms. Indeed, the depressive score evaluated by questionnaires may be above or below the cut-off value over the short term; therefore, a long-term study considering such unstable outcomes should be conducted. In the current study, LAN exposure was measured for only two nights; thus, an amplitude of LAN intensity has been focused. However, multiple measurements over time in the future study would allow an analysis of fluctuations in LAN exposure, which might be important for circadian physiology.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0002-9262 ISBN Medium  
  Area (down) Expedition Conference  
  Notes Approved no  
  Call Number LoNNe @ kyba @ Serial 1717  
Permanent link to this record
 

 
Author Russart, K.L.G.; Nelson, R.J. url  doi
openurl 
  Title Light at night as an environmental endocrine disruptor Type Journal Article
  Year 2018 Publication Physiology & Behavior Abbreviated Journal Physiol Behav  
  Volume 190 Issue Pages 82-89  
  Keywords Human Health; Animals  
  Abstract Environmental endocrine disruptors (EEDs) are often consequences of human activity; however, the effects of EEDs are not limited to humans. A primary focus over the past approximately 30years has been on chemical EEDs, but the repercussions of non-chemical EEDs, such as artificial light at night (LAN), are of increasing interest. The sensitivity of the circadian system to light and the influence of circadian organization on overall physiology and behavior make the system a target for disruption with widespread effects. Indeed, there is increasing evidence for a role of LAN in human health, including disruption of circadian regulation and melatonin signaling, metabolic dysregulation, cancer risk, and disruption of other hormonally-driven systems. These effects are not limited to humans; domesticated animals as well as wildlife are also exposed to LAN, and at risk for disrupted circadian rhythms. Here, we review data that support the role of LAN as an endocrine disruptor in humans to be considered in treatments and lifestyle suggestions. We also present the effects of LAN in other animals, and discuss the potential for ecosystem-wide effects of artificial LAN. This can inform decisions in agricultural practices and urban lighting decisions to avoid unintended outcomes.  
  Address Department of Neuroscience, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-9384 ISBN Medium  
  Area (down) Expedition Conference  
  Notes PMID:28870443 Approved no  
  Call Number LoNNe @ kyba @ Serial 1719  
Permanent link to this record
 

 
Author Souman, J.L.; Tinga, A.M.; Te Pas, S.F.; van Ee, R.; Vlaskamp, B.N.S. url  doi
openurl 
  Title Acute alerting effects of light: a systematic literature review Type Journal Article
  Year 2018 Publication Behavioural Brain Research Abbreviated Journal Behav Brain Res  
  Volume 337 Issue Pages 228-239  
  Keywords Human Health  
  Abstract Periodic, well timed exposure to light is important for our health and wellbeing. Light, in particular in the blue part of the spectrum, is thought to affect alertness both indirectly, by modifying circadian rhythms, and directly, giving rise to acute effects. We performed a systematic review of empirical studies on direct, acute effects of light on alertness to evaluate the reliability of these effects and to assess to what extent they depend on other factors, such as time of day, exposure duration and sleep pressure. In total, we identified 74 studies in which either light intensity, spectral distribution, or both were manipulated, and the effects on behavioral measures of alertness were evaluated, either subjectively or measured in performance tasks. The results show that increasing the intensity or the color temperature of polychromatic white light in general has been found to increase subjective ratings of alertness, though a substantial proportion of these studies failed to find significant effects. There is little evidence in the literature that these subjective alerting effects of light also translate into improvements on performance measures of alertness. For monochromatic or narrowband light exposure, some studies have shown improvement in reaction time tasks with exposure to blue light, but generally this was not accompanied by changes in subjective alertness. Thus, the alerting effects of light are far less clear than often suggested. We suggest that in future studies more attention should be paid to other factors that may influence the effects of light, such as chronotype, circadian phase, homeostatic state and prior light history.  
  Address Philips Research (Department Brain, Behavior & Cognition), Eindhoven, The Netherlands  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0166-4328 ISBN Medium  
  Area (down) Expedition Conference  
  Notes PMID:28912014 Approved no  
  Call Number LoNNe @ kyba @ Serial 1727  
Permanent link to this record
 

 
Author Boswell, W.T.; Boswell, M.; Walter, D.J.; Navarro, K.L.; Chang, J.; Lu, Y.; Savage, M.G.; Shen, J.; Walter, R.B. url  doi
openurl 
  Title Exposure to 4100K fluorescent light elicits sex specific transcriptional responses in Xiphophorus maculatus skin Type Journal Article
  Year 2018 Publication Comparative Biochemistry and Physiology. Toxicology & Pharmacology : CBP Abbreviated Journal Comp Biochem Physiol C Toxicol Pharmacol  
  Volume 208 Issue Pages 96-104  
  Keywords Animals  
  Abstract It has been reported that exposure to artificial light may affect oxygen intake, heart rate, absorption of vitamins and minerals, and behavioral responses in humans. We have reported specific gene expression responses in the skin of Xiphophorus fish after exposure to ultraviolet light (UV), as well as, both broad spectrum and narrow waveband visible light. In regard to fluorescent light (FL), we have shown that male X. maculatus exposed to 4100K FL (i.e. “cool white”) rapidly suppress transcription of many genes involved with DNA replication and repair, chromosomal segregation, and cell cycle progression in skin. We have also detailed sex specific transcriptional responses of Xiphophorus skin after exposure to UVB. However, investigation of gender differences in global gene expression response after exposure to 4100K FL has not been reported, despite common use of this FL source for residential, commercial, and animal facility illumination. Here, we compare RNASeq results analyzed to assess changes in the global transcription profiles of female and male X. maculatus skin in response to 4100K FL exposure. Our results suggest 4100K FL exposure incites a sex-biased genetic response including up-modulation of inflammation in females and down modulation of DNA repair/replication in males. In addition, we identify clusters of genes that become oppositely modulated in males and females after FL exposure that are principally involved in cell death and cell proliferation.  
  Address Department of Chemistry and Biochemistry, Xiphophorus Genetic Stock Center, Texas State University, 601 University Drive, San Marcos, TX 78666, USA. Electronic address: RW12@txstate.edu  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1532-0456 ISBN Medium  
  Area (down) Expedition Conference  
  Notes PMID:28965926 Approved no  
  Call Number LoNNe @ kyba @ Serial 1739  
Permanent link to this record
 

 
Author Gonzalez, T.J.; Lu, Y.; Boswell, M.; Boswell, W.; Medrano, G.; Walter, S.; Ellis, S.; Savage, M.; Varga, Z.M.; Lawrence, C.; Sanders, G.; Walter, R.B. url  doi
openurl 
  Title Fluorescent light exposure incites acute and prolonged immune responses in Zebrafish (Danio rerio) skin Type Journal Article
  Year 2018 Publication Comparative Biochemistry and Physiology. Toxicology & Pharmacology : CBP Abbreviated Journal Comp Biochem Physiol C Toxicol Pharmacol  
  Volume 208 Issue Pages 87-95  
  Keywords Animals  
  Abstract Artificial light produces an emission spectrum that is considerably different than the solar spectrum. Artificial light has been shown to affect various behavior and physiological processes in vertebrates. However, there exists a paucity of data regarding the molecular genetic effects of artificial light exposure. Previous studies showed that one of the commonly used fluorescent light source (FL; 4100K or “cool white”) can affect signaling pathways related to maintenance of circadian rhythm, cell cycle progression, chromosome segregation, and DNA repair/recombination in the skin of male Xiphophorus maculatus. These observations raise questions concerning the kinetics of the FL induced gene expression response, and which biological functions become modulated at various times after light exposure. To address these questions, we exposed zebrafish to 4100K FL and utilized RNASeq to assess gene expression changes in skin at various times (1 to 12h) after FL exposure. We found 4100K FL incites a robust early (1-2h) transcriptional response, followed by a more protracted late response (i.e., 4-12h). The early transcriptional response involves genes associated with cell migration/infiltration and cell proliferation as part of an overall increase in immune function and inflammation. The protracted late transcriptional response occurs within gene sets predicted to maintain and perpetuate the inflammatory response, as well as suppression of lipid, xenobiotic, and melatonin metabolism.  
  Address Xiphophorus Genetic Stock Center, Department of Chemistry and Biochemistry, 419 Centennial Hall, Texas State University, 601 University Drive, San Marcos, TX 78666, USA. Electronic address: RWalter@txstate.edu  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1532-0456 ISBN Medium  
  Area (down) Expedition Conference  
  Notes PMID:28965927 Approved no  
  Call Number LoNNe @ kyba @ Serial 1740  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: