toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author (down) McGlashan, E.M.; Poudel, G.R.; Vidafar, P.; Drummond, S.P.A.; Cain, S.W. url  doi
openurl 
  Title Imaging Individual Differences in the Response of the Human Suprachiasmatic Area to Light Type Journal Article
  Year 2018 Publication Frontiers in Neurology Abbreviated Journal Front. Neurol.  
  Volume 9 Issue Pages  
  Keywords Human Health  
  Abstract Circadian disruption is associated with poor health outcomes, including sleep and mood disorders. The suprachiasmatic nucleus (SCN) of the anterior hypothalamus acts as the master biological clock in mammals, regulating circadian rhythms throughout the body. The clock is synchronized to the day/night cycle via retinal light exposure. The BOLD-fMRI response of the human suprachiasmatic area to light has been shown to be greater in the night than in the day, consistent with the known sensitivity of the clock to light at night. Whether the BOLD-fMRI response of the human suprachiasmatic area to light is related to a functional outcome has not been demonstrated. In a pilot study (n = 10), we investigated suprachiasmatic area activation in response to light in a 30 s block-paradigm of lights on (100 lux) and lights off (< 1 lux) using the BOLD-fMRI response, compared to each participant's melatonin suppression response to moderate indoor light (100 lux). We found a significant correlation between activation in the suprachiasmatic area in response to light in the scanner and melatonin suppression, with increased melatonin suppression being associated with increased suprachiasmatic area activation in response to the same light level. These preliminary findings are a first step toward using imaging techniques to measure individual differences in circadian light sensitivity, a measure that may have clinical relevance in understanding vulnerability in disorders that are influenced by circadian disruption.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1664-2295 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number NC @ ehyde3 @ Serial 2114  
Permanent link to this record
 

 
Author (down) McGlashan, E.M.; Nandam, L.S.; Vidafar, P.; Mansfield, D.R.; Rajaratnam, S.M.W.; Cain, S.W. url  doi
openurl 
  Title The SSRI citalopram increases the sensitivity of the human circadian system to light in an acute dose Type Journal Article
  Year 2018 Publication Psychopharmacology Abbreviated Journal Psychopharmacology (Berl)  
  Volume in press Issue Pages in press  
  Keywords Human Health  
  Abstract RATIONALE: Disturbances of the circadian system are common in depression. Though they typically subside when depression is treated with antidepressants, the mechanism by which this occurs is unknown. Despite being the most commonly prescribed class of antidepressants, the effect of selective serotonin reuptake inhibitors (SSRIs) on the human circadian clock is not well understood. OBJECTIVE: To examine the effect of the SSRI citalopram (30 mg) on the sensitivity of the human circadian system to light. METHODS: This study used a double-blind, placebo-controlled, within-subjects, crossover design. Participants completed two melatonin suppression assessments in room level light (~ 100 lx), taking either a single dose of citalopram 30 mg or a placebo at the beginning of each light exposure. Melatonin suppression was calculated by comparing placebo and citalopram light exposure conditions to a dim light baseline. RESULTS: A 47% increase in melatonin suppression was observed after administration of an acute dose of citalopram, with all participants showing more suppression after citalopram administration (large effect, d = 1.54). Further, melatonin onset occurred later under normal room light with citalopram compared to placebo. CONCLUSIONS: Increased sensitivity of the circadian system to light could assist in explaining some of the inter-individual variability in antidepressant treatment responses, as it is likely to assist in recovery in some patients, while causing further disruption for others.  
  Address Monash Institute of Cognitive and Clinical Neurosciences, School of Psychological Sciences, Monash University, 18 Innovation Walk, Clayton, VIC, 3800, Australia. sean.cain@monash.edu  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0033-3158 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:30219986 Approved no  
  Call Number GFZ @ kyba @ Serial 2012  
Permanent link to this record
 

 
Author (down) Matveyenko, A.V. url  doi
openurl 
  Title Consideration for Circadian Physiology in Rodent Research Type Journal Article
  Year 2018 Publication Physiology (Bethesda, Md.) Abbreviated Journal Physiology (Bethesda)  
  Volume 33 Issue 4 Pages 250-251  
  Keywords Animals; Commentary  
  Abstract  
  Address Mayo Clinic , Rochester, Minnesota  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1548-9221 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:29873599 Approved no  
  Call Number GFZ @ kyba @ Serial 1935  
Permanent link to this record
 

 
Author (down) Massetti, L. url  doi
openurl 
  Title Assessing the impact of street lighting on Platanus x acerifolia phenology Type Journal Article
  Year 2018 Publication Urban Forestry & Urban Greening Abbreviated Journal Urban Forestry & Urban Greening  
  Volume 34 Issue Pages 71-77  
  Keywords Plants  
  Abstract Autumn phenology is an important part of the tree growing season that is still poorly understood. In addition to the environmental factors that might affect its timing, there are artificial effects introduced by modern society that could interfere with it, such as the increasing use of artificial light to illuminate urban nights. This study investigates the relationship between outdoor public lighting and leaf senescence of Platanus x acerifolia that constitutes with more than 4000 individuals, and 6% of public greening in Florence, Italy. The difference in autumn phenology under two lighting conditions was assessed by analysing data collected in a real context, using a presence-absence protocol of green leaves on 283 trees during leaf fall season from 2014 to 2017. Trees were classified in two groups of different light exposure. In 2016-2017, data were also collected at Cascine park, the main green area within the city and darker than the monitored sites. According to the analysis, the percentage of trees with green leaves under luminaires was significantly higher than trees far from the luminaires, for all sites from mid-December to the end of January, and this effect was enhanced during 2016-2017 which was characterised by a colder winter. In the same year, the period of absence of green leaves at Cascine started at least 20 days earlier than the other sites. These findings should be taken into consideration by scientists because artificial light could affect autumn phenology and therefore the length of the vegetative season, and by urban greening and light managers during the design and management of public green spaces. Moreover, the presence-absence protocol proved to be suitable for collecting observations because it was easy to perform in a real context.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1618-8667 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 1932  
Permanent link to this record
 

 
Author (down) Masri, S.; Sassone-Corsi, P. url  doi
openurl 
  Title The emerging link between cancer, metabolism, and circadian rhythms Type Journal Article
  Year 2018 Publication Nature Medicine Abbreviated Journal Nat Med  
  Volume 24 Issue 12 Pages 1795-1803  
  Keywords Human Health; Review  
  Abstract The circadian clock is a complex cellular mechanism that, through the control of diverse metabolic and gene expression pathways, governs a large array of cyclic physiological processes. Epidemiological and clinical data reveal a connection between the disruption of circadian rhythms and cancer that is supported by recent preclinical data. In addition, results from animal models and molecular studies underscore emerging links between cancer metabolism and the circadian clock. This has implications for therapeutic approaches, and we discuss the possible design of chronopharmacological strategies.  
  Address Department of Biological Chemistry, Center for Epigenetics and Metabolism, INSERM U1233, University of California Irvine, Irvine, CA, USA. psc@uci.edu  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1078-8956 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:30523327 Approved no  
  Call Number GFZ @ kyba @ Serial 2135  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: