|   | 
Details
   web
Records
Author (up) Kim, Y.J.; Kim, H.M.; Kim, H.M.; Jeong, B.R.; Lee, H.-J.; Kim, H.-J.; Hwang, S.J.
Title Ice plant growth and phytochemical concentrations are affected by light quality and intensity of monochromatic light-emitting diodes Type Journal Article
Year 2018 Publication Horticulture, Environment, and Biotechnology Abbreviated Journal Hortic. Environ. Biotechnol.
Volume 59 Issue 4 Pages 529-536
Keywords Plants
Abstract The ice plant (Mesembryanthemum crystallinum L.), widely known to be an effective cure for diabetes mellitus, is also a functional crop. This study was conducted to examine the effects of light quality and intensity of monochromatic light-emitting diodes (LEDs) on ice plant growth and phytochemical concentrations in a closed-type plant production system. Ice plant seedlings were transplanted into a deep floating technique system with a recycling nutrient solution (EC 4.0 dS m−1, pH 6.5). Fluorescent lamps, as well as monochromatic red (660 nm) and blue (450 nm) LEDs, were used at 120 ± 5 or 150 ± 5 µmol m−2 s−1 PPFD with a photoperiod of 14 h/10 h (light/dark) for 4 weeks. Ice plants showed higher growth under the high light intensity treatment, especially under the red LEDs. Furthermore, the SPAD value and photosynthetic rate were higher under the red LEDs with 150 µmol m−2 s−1 PPFD. The ice plant phytochemical composition, such as antioxidant activity and myo-inositol and pinitol concentrations, were highest under the blue LEDs with 150 µmol m−2 s−1 PPFD. Total phenolic concentration was highest under the blue LEDs with 120 µmol m−2 s−1 PPFD. Despite a slightly different dependence on light intensity, phytochemical concentrations responded positively to the blue LED treatments, as compared to other treatments. In conclusion, this study suggests that red LEDs enhance ice plant biomass, while blue LEDs induce phytochemical
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2211-3452 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 1983
Permanent link to this record
 

 
Author (up) Kocifaj, M.
Title Towards a Comprehensive City Emission Function (CCEF) Type Journal Article
Year 2018 Publication Journal of Quantitative Spectroscopy and Radiative Transfer Abbreviated Journal JQSRT
Volume 205 Issue Pages 253-266
Keywords Lighting; Skyglow
Abstract The comprehensive city emission function (CCEF) is developed for a heterogeneous light-emitting or blocking urban environments, embracing any combination of input parameters that characterize linear dimensions in the system (size and distances between buildings or luminaires), properties of light-emitting elements (such as luminous building façades and street lighting), ground reflectance and total uplight-fraction, all of these defined for an arbitrarily sized 2D area. The analytical formula obtained is not restricted to a single model class as it can capture any specific light-emission feature for wide range of cities. The CCEF method is numerically fast in contrast to what can be expected of other probabilistic approaches that rely on repeated random sampling. Hence the present solution has great potential in light-pollution modeling and can be included in larger numerical models. Our theoretical findings promise great progress in light-pollution modeling as this is the first time an analytical solution to city emission function (CEF) has been developed that depends on statistical mean size and height of city buildings, inter-building separation, prevailing heights of light fixtures, lighting density, and other factors such as e.g. luminaire light output and light distribution, including the amount of uplight, and representative city size. The model is validated for sensitivity and specificity pertinent to combinations of input parameters in order to test its behavior under various conditions, including those that can occur in complex urban environments. It is demonstrated that the solution model succeeds in reproducing a light emission peak at some elevated zenith angles and is consistent with reduced rather than enhanced emission in directions nearly parallel to the ground.
Address
Corporate Author Thesis
Publisher ScienceDirect Place of Publication Editor
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number LoNNe @ kyba @ Serial 1757
Permanent link to this record
 

 
Author (up) Koen, E.L.; Minnaar, C.; Roever, C.L.; Boyles, J.G.
Title Emerging threat of the 21(st) century lightscape to global biodiversity Type Journal Article
Year 2018 Publication Global Change Biology Abbreviated Journal Glob Chang Biol
Volume 24 Issue 6 Pages 2315-2324
Keywords Animals; Ecology; Remote Sensing
Abstract Over the last century the temporal and spatial distribution of light on Earth has been drastically altered by human activity. Despite mounting evidence of detrimental effects of light pollution on organisms and their trophic interactions, the extent to which light pollution threatens biodiversity on a global scale remains unclear. We assessed the spatial extent and magnitude of light encroachment by measuring change in the extent of light using satellite imagery from 1992 to 2012 relative to species richness for terrestrial and freshwater mammals, birds, reptiles, and amphibians. The encroachment of light into previously dark areas was consistently high, often doubling, in areas of high species richness for all four groups. This pattern persisted for nocturnal groups (e.g., bats, owls, and geckos) and species considered vulnerable to extinction. Areas with high species richness and large increases in light extent were clustered within newly industrialized regions where expansion of light is likely to continue unabated unless we act to conserve remaining darkness. Implementing change at a global scale requires global public, and therefore scientific, support. Here, we offer substantial evidence that light extent is increasing where biodiversity is high, representing an emerging threat to global biodiversity requiring immediate attention. This article is protected by copyright. All rights reserved.
Address Center for Ecology and Department of Zoology, Southern Illinois University, Carbondale, Illinois, 62901, USA
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1354-1013 ISBN Medium
Area Expedition Conference
Notes PMID:29575356 Approved no
Call Number GFZ @ kyba @ Serial 1833
Permanent link to this record
 

 
Author (up) Kong, Y.; Stasiak, M.; Dixon, M.A.; Zheng, Y.
Title Blue light associated with low phytochrome activity can promote elongation growth as shade-avoidance response: A comparison with red light in four bedding plant species Type Journal Article
Year 2018 Publication Environmental and Experimental Botany Abbreviated Journal Environmental and Experimental Botany
Volume 155 Issue Pages 345-359
Keywords Plants
Abstract o explore the action mode of blue light on elongation growth of bedding plants, the plant growth and morphology traits of petunia (Petunia × hybrida, ‘Duvet Red’), calibrachoa (Calibrachoa × hybrida, ‘Kabloom Deep Blue’), geranium (Pelargonium × hortorum, ‘Pinto Premium Salmon’), and marigold (Tagetes erecta, ‘Antigua Orange’) were compared under four light quality treatments: (1) R, “pure” red light (660 nm); (2) B, “pure” blue light (450 nm); (3) BR, “unpure” blue light created by mixing B with a low level of R to provide B/R ≈ 9; (4) BRF, “unpure” blue light created by adding a low level of far red light to BR with red/far red ≈ 1. Continuous (24-h) light-emitting diode lighting with either 100 or 50 μmol m−2 s−1 photosynthetic photon flux density at ≈ 23℃ was used with the above treatments. After 14–20 day of lighting treatment, B promoted elongation growth compared to R, as demonstrated by a greater canopy height, main stem length, internode length, and daily main stem extension rate. However, BR showed similar or inhibitory effects on these traits relative to R, while BRF exhibited similar promotion effects as B. The calculated phytochrome photoequilibrium, an indication of phytochrome activity, was higher for R (0.89) and BR (0.74) than for B (0.49) and BRF (0.63). Adding red (or far red) light reversed the effects of B (or BR) on elongation growth and the phytochrome photoequilibrium, suggesting that blue light promotion of elongation growth is related to the lower phytochrome activity. Also, B and BRF, when compared to R or BR, promoted elongation growth to a greater degree at 50 than 100 μmol m−2 s−1 for petunia and calibrachoa. In addition to the promoted elongation growth, B and BRF reduced side branch number, biomass allocation to side branches, leaf epinasty, leaf angle, and/or leaf chlorophyll content relative to R or BR, but increased individual leaf area, petiole length, and/or biomass allocation to main stem, which varied with different species. It suggests that the promoted elongation growth by blue light associated with lower phytochrome activity is one of shade-avoidance responses with varying sensitivity among species.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0098-8472 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 1973
Permanent link to this record
 

 
Author (up) Konkal, P.; Ganesh, C.B.
Title Exposure to low or high light intensity affects pituitary-testicular activity in the fish Oreochromis mossambicus Type Journal Article
Year 2018 Publication Aquaculture Abbreviated Journal Aquaculture
Volume 497 Issue Pages 109-116
Keywords Animals
Abstract Light is an important factor for the successful reproduction of most fish. In this investigation, effect of different light intensities on pituitary-testis axis was studied for a period of 21 days, under normal photoperiodic regime in the tilapia Oreochromis mossambicus. The mean numbers of spermatogonia (Sg), primary spermatocytes (Ps), secondary spermatocytes (Ss), early spermatids (Est) and late spermatids (Lst) did not show significant difference between fish exposed to moderate light intensity (MLI) and initial controls or controls, whereas the mean numbers of Sg were significantly lower in fish exposed to low light intensity (LLI) compared to those of initial controls, controls and MLI groups. However, the mean numbers of Ps, Ss, Est and Lst were significantly lower in fish exposed to LLI and high light intensity (HLI) compared to those of other experimental groups. Furthermore, in the pituitary gland, weakly immunoreactive luteinizing hormone (LH) secreting cells were observed in the proximal pars distalis (PPD) region in fish exposed to LLI and HLI in contrast to the intense immunolabelling of these cells in initial controls, controls and MLI groups. The androgen receptors showed diminished immunoreactivity in the Sertoli cells along the seminiferous lobules of the testis in fish exposed to LLI and HLI, whereas the strongly immunoreactive androgen receptors were observed in the Sertoli cells in initial controls, controls and MLI groups. Taken together, these results indicate that long-term exposure to low or high light intensity light suppresses spermatogenetic process and that this inhibition is due to reduced secretory activity of LH cells in the pituitary gland and androgen secretion in the testis of the fish O. mossambicus.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0044-8486 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 1974
Permanent link to this record