|   | 
Details
   web
Records
Author (up) Rodríguez Martín, A.; Holmberg, R.; Dann, P.; Chiaradia, A.
Title Penguin colony attendance under artificial lights for ecotourism Type Journal Article
Year 2018 Publication Journal of Experimental Zoology. Part A, Ecological and Integrative Physiology Abbreviated Journal J Exp Zool A Ecol Integr Physiol
Volume 329 Issue 8-9 Pages 457-464
Keywords Animals
Abstract Wildlife watching is an emerging ecotourism activity around the world. In Australia and New Zealand, night viewing of little penguins attracts hundreds of thousands of visitors per year. As penguins start coming ashore after sunset, artificial lighting is essential to allow visitors to view them in the dark. This alteration of the nightscape warrants investigation for any potential effects of artificial lighting on penguin behavior. We experimentally tested how penguins respond to different light wavelengths (colors) and intensities to examine effects on the colony attendance behavior at two sites on Phillip Island, Australia. At one site, nocturnal artificial illumination has been used for penguin viewing for decades, whereas at the other site, the only light is from the natural night sky. Light intensity did not affect colony attendance behaviors of penguins at the artificially lit site, probably due to penguin habituation to lights. At the not previously lit site, penguins preferred lit paths over dark paths to reach their nests. Thus, artificial light might enhance penguin vision at night and consequently it might reduce predation risk and energetic costs of locomotion through obstacle and path detection. Although penguins are faithful to their path, they can be drawn to artificial lights at small spatial scale, so light pollution could attract penguins to undesirable lit areas. When artificial lighting is required, we recommend keeping lighting as dim and time-restricted as possible to mitigate any negative effects on the behavior of penguins and their natural habitat.
Address Research Department, Phillip Island Nature Parks, Cowes, Victoria, Australia
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2471-5638 ISBN Medium
Area Expedition Conference
Notes PMID:29603671 Approved no
Call Number GFZ @ kyba @ Serial 1834
Permanent link to this record
 

 
Author (up) Román, M.O.; Wang, Z.; Sun, Q.; Kalb, V.; Miller, S.D.; Molthan, A.; Schultz, L.; Bell, J.; Stokes, E.C.; Pandey, B.; Seto, K.C.; Hall, D.; Oda, T.; Wolfe, R.E.; Lin, G.; Golpayegani, N.; Devadiga, S.; Davidson, C.; Sarkar, S.; Praderas, C.; Schmaltz, J.; Boller, R.; Stevens, J.; Ramos González, O.M.; Padilla, E.; Alonso, J.; Detrés, Y.; Armstrong, R.; Miranda, I.; Conte, Y.; Marrero, N.; MacManus, K.; Esch, T.; Masuoka, E.J.
Title NASA's Black Marble nighttime lights product suite Type Journal Article
Year 2018 Publication Remote Sensing of Environment Abbreviated Journal Remote Sensing of Environment
Volume 210 Issue Pages 113-143
Keywords Remote Sensing
Abstract NASA's Black Marble nighttime lights product suite (VNP46) is available at 500 m resolution since January 2012 with data from the Visible Infrared Imaging Radiometer Suite (VIIRS) Day/Night Band (DNB) onboard the Suomi National Polar-orbiting Platform (SNPP). The retrieval algorithm, developed and implemented for routine global processing at NASA's Land Science Investigator-led Processing System (SIPS), utilizes all high-quality, cloud-free, atmospheric-, terrain-, vegetation-, snow-, lunar-, and stray light-corrected radiances to estimate daily nighttime lights (NTL) and other intrinsic surface optical properties. Key algorithm enhancements include: (1) lunar irradiance modeling to resolve non-linear changes in phase and libration; (2) vector radiative transfer and lunar bidirectional surface anisotropic reflectance modeling to correct for atmospheric and BRDF effects; (3) geometric-optical and canopy radiative transfer modeling to account for seasonal variations in NTL; and (4) temporal gap-filling to reduce persistent data gaps. Extensive benchmark tests at representative spatial and temporal scales were conducted on the VNP46 time series record to characterize the uncertainties stemming from upstream data sources. Initial validation results are presented together with example case studies illustrating the scientific utility of the products. This includes an evaluation of temporal patterns of NTL dynamics associated with urbanization, socioeconomic variability, cultural characteristics, and displaced populations affected by conflict. Current and planned activities under the Group on Earth Observations (GEO) Human Planet Initiative are aimed at evaluating the products at different geographic locations and time periods representing the full range of retrieval conditions.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0034-4257 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 1846
Permanent link to this record
 

 
Author (up) Rowse, E.G.; Harris, S.; Jones, G.
Title Effects of dimming light-emitting diode street lights on light-opportunistic and light-averse bats in suburban habitats Type Journal Article
Year 2018 Publication Royal Society Open Science Abbreviated Journal R. Soc. open sci.
Volume 5 Issue 6 Pages 180205
Keywords Animals; Lighting
Abstract Emerging lighting technologies provide opportunities for reducing carbon footprints, and for biodiversity conservation. In addition to installing light-emitting diode street lights, many local authorities are also dimming street lights. This might benefit light-averse bat species by creating dark refuges for these bats to forage and commute in human-dominated habitats. We conducted a field experiment to determine how light intensity affects the activity of the light-opportunistic Pipistrellus pipistrellus and light-averse bats in the genus Myotis. We used four lighting levels controlled under a central management system at existing street lights in a suburban environment (0, 25, 50 and 100% of the original output). Higher light intensities (50 and 100% of original output) increased the activity of light-opportunistic species but reduced the activity of light-averse bats. Compared to the unlit treatment, the 25% lighting level did not significantly affect either P. pipistrellus or Myotis spp. Our results suggest that it is possible to achieve a light intensity that provides both economic and ecological benefits by providing sufficient light for human requirements while not deterring light-averse bats.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2054-5703 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 1931
Permanent link to this record
 

 
Author (up) Russart, K.L.G.; Nelson, R.J.
Title Light at night as an environmental endocrine disruptor Type Journal Article
Year 2018 Publication Physiology & Behavior Abbreviated Journal Physiol Behav
Volume 190 Issue Pages 82-89
Keywords Human Health; Animals
Abstract Environmental endocrine disruptors (EEDs) are often consequences of human activity; however, the effects of EEDs are not limited to humans. A primary focus over the past approximately 30years has been on chemical EEDs, but the repercussions of non-chemical EEDs, such as artificial light at night (LAN), are of increasing interest. The sensitivity of the circadian system to light and the influence of circadian organization on overall physiology and behavior make the system a target for disruption with widespread effects. Indeed, there is increasing evidence for a role of LAN in human health, including disruption of circadian regulation and melatonin signaling, metabolic dysregulation, cancer risk, and disruption of other hormonally-driven systems. These effects are not limited to humans; domesticated animals as well as wildlife are also exposed to LAN, and at risk for disrupted circadian rhythms. Here, we review data that support the role of LAN as an endocrine disruptor in humans to be considered in treatments and lifestyle suggestions. We also present the effects of LAN in other animals, and discuss the potential for ecosystem-wide effects of artificial LAN. This can inform decisions in agricultural practices and urban lighting decisions to avoid unintended outcomes.
Address Department of Neuroscience, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-9384 ISBN Medium
Area Expedition Conference
Notes PMID:28870443 Approved no
Call Number LoNNe @ kyba @ Serial 1719
Permanent link to this record
 

 
Author (up) Russart, K.L.G.; Nelson, R.J.
Title Artificial light at night alters behavior in laboratory and wild animals Type Journal Article
Year 2018 Publication Journal of Experimental Zoology. Part A, Ecological and Integrative Physiology Abbreviated Journal J Exp Zool A Ecol Integr Physiol
Volume 329 Issue 8-9 Pages 401-408
Keywords Animals; Review
Abstract Life has evolved to internalize and depend upon the daily and seasonal light cycles to synchronize physiology and behavior with environmental conditions. The nightscape has been vastly changed in response to the use of artificial lighting. Wildlife is now often exposed to direct lighting via streetlights or indirect lighting via sky glow at night. Because many activities rely on daily and seasonal light cues, the effects of artificial light at night could be extensive, but remain largely unknown. Laboratory studies suggest exposure to light at night can alter typical timing of daily locomotor activity and shift the timing of foraging/food intake to the daytime in nocturnal rodents. Additionally, nocturnal rodents decrease anxiety-like behaviors (i.e., spend more time in the open and increase rearing up) in response to even dim light at night. These are all likely maladaptive responses in the wild. Photoperiodic animals rely on seasonal changes in day length as a cue to evoke physiological and behavioral modifications to anticipate favorable and unfavorable conditions for survival and reproduction. Light at night can mask detection of short days, inappropriately signal long days, and thus desynchronize seasonal reproductive activities. We review laboratory and the sparse field studies that address the effects of exposure to artificial light at night to propose that exposure to light at night disrupts circadian and seasonal behavior in wildlife, which potentially decreases individual fitness and modifies ecosystems.
Address Behavioral Medicine and Psychiatry, School of Medicine, West Virginia University, Morgantown, West Virginia
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2471-5638 ISBN Medium
Area Expedition Conference
Notes PMID:29806740 Approved no
Call Number GFZ @ kyba @ Serial 1928
Permanent link to this record