toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author (up) Kehoe, R.C.; Cruse, D.; Sanders, D.; Gaston, K.J.; van Veen, F.J.F. url  doi
openurl 
  Title Shifting daylength regimes associated with range shifts alter aphid-parasitoid community dynamics Type Journal Article
  Year 2018 Publication Ecology and Evolution Abbreviated Journal Ecol Evol  
  Volume 8 Issue 17 Pages 8761-8769  
  Keywords Animals; Ecology  
  Abstract With climate change leading to poleward range expansion of species, populations are exposed to new daylength regimes along latitudinal gradients. Daylength is a major factor affecting insect life cycles and activity patterns, so a range shift leading to new daylength regimes is likely to affect population dynamics and species interactions; however, the impact of daylength in isolation on ecological communities has not been studied so far. Here, we tested for the direct and indirect effects of two different daylengths on the dynamics of experimental multitrophic insect communities. We compared the community dynamics under “southern” summer conditions of 14.5-hr daylight to “northern” summer conditions of 22-hr daylight. We show that food web dynamics indeed respond to daylength with one aphid species (Acyrthosiphon pisum) reaching much lower population sizes at the northern daylength regime compared to under southern conditions. In contrast, in the same communities, another aphid species (Megoura viciae) reached higher population densities under northern conditions. This effect at the aphid level was driven by an indirect effect of daylength causing a change in competitive interaction strengths, with the different aphid species being more competitive at different daylength regimes. Additionally, increasing daylength also increased growth rates in M. viciae making it more competitive under summer long days. As such, the shift in daylength affected aphid population sizes by both direct and indirect effects, propagating through species interactions. However, contrary to expectations, parasitoids were not affected by daylength. Our results demonstrate that range expansion of whole communities due to climate change can indeed change interaction strengths between species within ecological communities with consequences for community dynamics. This study provides the first evidence of daylength affecting community dynamics, which could not be predicted from studying single species separately.  
  Address College of Life and Environmental Sciences University of Exeter Penryn Cornwall UK  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2045-7758 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:30271543; PMCID:PMC6157684 Approved no  
  Call Number NC @ ehyde3 @ Serial 2100  
Permanent link to this record
 

 
Author (up) Kelsey, E.C.; Felis, J.J.; Czapanskiy, M.; Pereksta, D.M.; Adams, J. url  doi
openurl 
  Title Collision and displacement vulnerability to offshore wind energy infrastructure among marine birds of the Pacific Outer Continental Shelf Type Journal Article
  Year 2018 Publication Journal of Environmental Management Abbreviated Journal J Environ Manage  
  Volume 227 Issue Pages 229-247  
  Keywords Animals  
  Abstract Marine birds are vulnerable to collision with and displacement by offshore wind energy infrastructure (OWEI). Here we present the first assessment of marine bird vulnerability to potential OWEI in the California Current System portion of the U.S. Pacific Outer Continental Shelf (POCS). Using population size, demography, life history, flight heights, and avoidance behavior for 62 seabird and 19 marine water bird species that occur in the POCS, we present and apply equations to calculate Population Vulnerability, Collision Vulnerability, and Displacement Vulnerability to OWEI for each species. Species with greatest Population vulnerability included those listed as species of concern (e.g., Least Tern [Sternula antillarum], Marbled Murrelet [Brachyramphus marmoratus], Pink-footed Shearwater [Puffinus creatopus]) and resident year-round species with small population sizes (e.g., Ashy Storm-Petrel [Oceanodroma homochroa], Brandt's Cormorant [Phalacrocorax penicillatus], and Brown Pelican [Pelecanus occidentalis]). Species groups with the greatest Collision Vulnerability included jaegers/skuas, pelicans, terns and gulls that spend significant amounts of time flying at rotor sweep zone height and don't show macro-avoidance behavior (avoidance of entire OWEI area). Species groups with the greatest Displacement Vulnerability show high macro-avoidance behavior and low habitat flexibility and included loons, grebes, sea ducks, and alcids. Using at-sea survey data from the southern POCS, we combined species-specific vulnerabilities described above with at-sea species densities to assess vulnerabilities spatially. Spatial vulnerability densities were greatest in areas with high species densities (e.g., near-shore areas) and locations where species with high vulnerability were found in abundance. Our vulnerability assessment helps understand and minimize potential impacts of OWEI infrastructure on marine birds in the POCS and could inform management decisions.  
  Address U.S. Geological Survey Western Ecological Research Center, Santa Cruz, CA 95062, USA  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0301-4797 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:30195148 Approved no  
  Call Number GFZ @ kyba @ Serial 2122  
Permanent link to this record
 

 
Author (up) Kernbach, M.E.; Hall, R.J.; Burkett-Cadena, N.; Unnasch, T.R.; Martin, L.B. url  doi
openurl 
  Title Dim light at night: physiological effects and ecological consequences for infectious disease Type Journal Article
  Year 2018 Publication Integrative and Comparative Biology Abbreviated Journal Integr Comp Biol  
  Volume 58 Issue 5 Pages 995-1007  
  Keywords Animals  
  Abstract Light pollution has emerged as a pervasive component of land development over the past century. Several detrimental impacts of this anthropogenic influence have been identified in night shift workers, laboratory rodents, and a plethora of wildlife species. Circadian, or daily, patterns are interrupted by the presence of light at night and have the capacity to alter rhythmic physiological or behavioral characteristics. Indeed, biorhythm disruption can lead to metabolic, reproductive, and immunological dysfunction depending on the intensity, timing, duration and wavelength of light exposure. Light pollution, in many forms and by many pathways, is thus apt to affect the nature of host-pathogen interactions. However, no research has yet investigated this possibility. The goal of this manuscript is to outline how dim light at night (dLAN), a relevant and common form of light pollution, may affect disease dynamics by interrupting circadian rhythms and regulation of immune responses as well as opportunities for host-parasite interactions and subsequent transmission risk including spillover into humans. We close by proposing some promising interventions including alternative lighting methods or vector control efforts.  
  Address Department of Global Health, University of South Florida, Tampa FL  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1540-7063 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:29939262 Approved no  
  Call Number GFZ @ kyba @ Serial 1946  
Permanent link to this record
 

 
Author (up) Kersavage, K.; Skinner, N.P.; Bullough, J.D.; Garvey, P.M.; Donnell, E.T.; Rea, M.S. url  doi
openurl 
  Title Investigation of flashing and intensity characteristics for vehicle-mounted warning beacons Type Journal Article
  Year 2018 Publication Accident Analysis & Prevention Abbreviated Journal Accident Analysis & Prevention  
  Volume 119 Issue Pages 23-28  
  Keywords Security; Public Safety; Lighting  
  Abstract Reducing the potential for crashes involving front line service workers and passing vehicles is important for increasing worker safety in work zones and similar locations. Flashing yellow warning beacons are often used to protect, delineate, and provide visual information to drivers within and approaching work zones. A nighttime field study using simulated workers, with and without reflective vests, present outside trucks was conducted to evaluate the effects of different warning beacon intensities and flash frequencies. Interactions between intensity and flash frequency were also analyzed. This study determined that intensitiesof 25/2.5 cd and 150/15 cd (peak/trough intensity) provided the farthest detection distances of the simulated worker. Mean detection distances in response to a flash frequency of 1 Hz were not statistically different from those in response to 4 Hz flashing. Simulated workers wearing reflective vests were seen the farthest distances away from the trucks for all combinations of intensity and flash frequency.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0001-4575 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 1950  
Permanent link to this record
 

 
Author (up) Kerstel, E.; Gardelein, A.; Barthelemy, M.; Fink, M.; Joshi, S.K.; Ursin, R. url  doi
openurl 
  Title Nanobob: a CubeSat mission concept for quantum communication experiments in an uplink configuration Type Journal Article
  Year 2018 Publication European physical journal quantum technology Abbreviated Journal EPJ Quantum Technol.  
  Volume 5 Issue 6 Pages 1-30  
  Keywords Remote Sensing  
  Abstract We present a ground-to-space quantum key distribution (QKD) mission concept and the accompanying feasibility study for the development of the associated low earth orbit nanosatellite payload. The quantum information is carried by single photons with the binary codes represented by polarization states of the photons. Distribution of entangled photons between the ground and the satellite can be used to certify the quantum nature of the link: a guarantee that no eavesdropping can take place. By placing the entangled photon source on the ground, the space segments contains “only” the less complex detection system, enabling its implementation in a compact enclosure, compatible with the 12U CubeSat standard (∼12 dm3). This reduces the overall cost of the project, making it an ideal choice as a pathfinder for future European quantum communication satellite missions. The space segment is also more versatile than one that contains the source since it is compatible with a multiple of QKD protocols (not restricted to entangled photon schemes) and can be used in quantum physics experiments, such as the investigation of entanglement decoherence. Other possible experiments include atmospheric transmission/turbulence characterization, dark area mapping, fine pointing and tracking, and accurate clock synchronization; all crucial for future global scale quantum communication efforts.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2196-0763 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number NC @ ehyde3 @ Serial 2115  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: