toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author (up) Lopes, A.C.C.; Villacorta-Correa, M.A.; Carvalho, T.B. url  doi
openurl 
  Title Lower light intensity reduces larval aggression in matrinxã, Brycon amazonicus Type Journal Article
  Year 2018 Publication Behavioural Processes Abbreviated Journal Behavioural Processes  
  Volume 151 Issue Pages 62-66  
  Keywords Animals  
  Abstract Brycon amazonicus shows a high frequency of aggressive behavior, which can be a limiting factor in intensive farming systems. Environmental changes can modulate the social interactions of fish and reduce aggression during the different stages of production. Groups of three larvae at 12 h after hatching (HAH) were subjected to different levels of light intensity: low (17 ± 3 lx), intermediate (204 ± 12.17 lx) and high (1,613.33 ± 499.03 lx), with eight replicates for each level. The lower light intensity reduced the frequency of aggressive interactions and locomotor activity exhibited by the animals. Based on these results, light intensity modulates aggression in B. amazonicus larvae. Manipulation of this factor could improve the social conditions of this species during farming and contribute to the development of new production technologies.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0376-6357 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number LoNNe @ kyba @ Serial 1810  
Permanent link to this record
 

 
Author (up) Lowden, A.; Lemos, N.; Gonçalves, B.; Öztürk, G.; Louzada, F.; Pedrazzoli, M.; Moreno, C. url  doi
openurl 
  Title Delayed Sleep in Winter Related to Natural Daylight Exposure among Arctic Day Workers Type Journal Article
  Year 2018 Publication Clocks & Sleep Abbreviated Journal Clocks & Sleep  
  Volume 1 Issue 1 Pages 105-116  
  Keywords Human Health  
  Abstract Natural daylight exposures in arctic regions vary substantially across seasons. Negative consequences have been observed in self-reports of sleep and daytime functions during the winter but have rarely been studied in detail. The focus of the present study set out to investigate sleep seasonality among indoor workers using objective and subjective measures. Sleep seasonality among daytime office workers (n = 32) in Kiruna (Sweden, 67.86° N, 20.23° E) was studied by comparing the same group of workers in a winter and summer week, including work and days off at the weekend, using actigraphs (motion loggers) and subjective ratings of alertness and mood. Actigraph analyses showed delayed sleep onset of 39 min in winter compared to the corresponding summer week (p < 0.0001) and shorter weekly sleep duration by 12 min (p = 0.0154). A delay of mid-sleep was present in winter at workdays (25 min, p < 0.0001) and more strongly delayed during days off (46 min, p < 0.0001). Sleepiness levels were higher in winter compared to summer (p < 0.05). Increased morning light exposure was associated with earlier mid-sleep (p < 0.001), while increased evening light exposure was associated with delay (p < 0.01). This study confirms earlier work that suggests that lack of natural daylight delays the sleep/wake cycle in a group of indoor workers, despite having access to electric lighting. Photic stimuli resulted in a general advanced sleep/wake rhythm during summer and increased alertness levels.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2624-5175 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 2137  
Permanent link to this record
 

 
Author (up) Lu, H.; Zhang, M.; Sun, W.; Li, W. url  doi
openurl 
  Title Expansion Analysis of Yangtze River Delta Urban Agglomeration Using DMSP/OLS Nighttime Light Imagery for 1993 to 2012 Type Journal Article
  Year 2018 Publication ISPRS International Journal of Geo-Information Abbreviated Journal Ijgi  
  Volume 7 Issue 2 Pages 52  
  Keywords Remote Sensing  
  Abstract Investigating the characteristics of urban expansion is helpful in managing the relationship between urbanization and the ecological and environmental issues related to sustainable development. The Defense Meteorological Satellite Program/Operational Line-scan System (DMSP/OLS) collects visible and near-infrared light from the Earth’s surface at night without moonlight. It generates effective time series data for mapping the dynamics of urban expansion. As a major urban agglomeration in the world, the Yangtze River Delta Urban Agglomeration (YRDUA) is an important intersection zone of both the “Belt and Road Initiative” and the “Yangtze River Economic Belt” in China. Therefore, this paper analyses urban expansion characteristics of the YRDUA for 1993–2012 from urban extents extracted from the DMSP/OLS for 1993, 1997, 2002, 2007, and 2012. First, calibration procedures are applied to DMSP/OLS data, including intercalibration, intra-annual composition, and inter-annual series correction procedures. Spatial extents are then extracted from the corrected DMSP/OLS data, and a threshold is determined via the spatial comparison method. Finally, three models are used to explore urban expansion characteristics of the YRDUA from expansion rates, expansion spatial patterns, and expansion evaluations. The results show that the urban expansion of the YRDUA occurred at an increasing rate from 1993–2007 and then declined after 2007 with the onset of the global financial crisis. The Suxichang and Ningbo metropolitan circles were seriously affected by the financial crisis, while the Hefei metropolitan circle was not. The urban expansion of the YRDUA moved from the northeast to the southwest over the 20-year period. Urban expansion involved internal infilling over the first 15 years and then evolved into external sprawl and suburbanization after 2007.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2220-9964 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number LoNNe @ kyba @ Serial 1813  
Permanent link to this record
 

 
Author (up) Lu, Y.; Coops, N.C. url  doi
openurl 
  Title Bright lights, big city: Causal effects of population and GDP on urban brightness Type Journal Article
  Year 2018 Publication PloS one Abbreviated Journal PLoS One  
  Volume 13 Issue 7 Pages e0199545  
  Keywords Remote Sensing  
  Abstract Cities are arguably both the cause, and answer, to societies' current sustainability issues. Urbanization is the interplay between a city's physical growth and its socio-economic development, both of which consume a substantial amount of energy and resources. Knowledge of the underlying driver(s) of urban expansion facilitates not only academic research but, more importantly, bridges the gap between science, policy drafting, and practical urban management. An increasing number of researchers are recognizing the benefits of innovative remotely sensed datasets, such as nighttime lights data (NTL), as a proxy to map urbanization and subsequently examine the driving socio-economic variables in cities. We further these approaches, by taking a trans-pacific view, and examine how an array of socio-economic ind0icators of 25 culturally and economically important urban hubs relate to long term patterns in NTL for the past 21 years. We undertake a classic econometric approach-panel causality tests which allow analysis of the causal relationships between NTL and socio-economic development across the region. The panel causality test results show a contrasting effect of population and gross domestic product (GDP) on NTL in fast, and slowly, changing cities. Information derived from this study quantitatively chronicles urban activities in the pan-Pacific region and potentially offers data for studies that spatially track local progress of sustainable urban development goals.  
  Address Integrated Remote Sensing Studio, Forest Recourses Management, University of British Columbia, Vancouver, BC, Canada  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-6203 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:29995923 Approved no  
  Call Number GFZ @ kyba @ Serial 1963  
Permanent link to this record
 

 
Author (up) Ludvigsen, M.; Berge, J.; Geoffroy, M.; Cohen, J.H.; De La Torre, P.R.; Nornes, S.M.; Singh, H.; Sorensen, A.J.; Daase, M.; Johnsen, G. url  doi
openurl 
  Title Use of an Autonomous Surface Vehicle reveals small-scale diel vertical migrations of zooplankton and susceptibility to light pollution under low solar irradiance Type Journal Article
  Year 2018 Publication Science Advances Abbreviated Journal Sci Adv  
  Volume 4 Issue 1 Pages eaap9887  
  Keywords Animals; Ecology  
  Abstract Light is a major cue for nearly all life on Earth. However, most of our knowledge concerning the importance of light is based on organisms' response to light during daytime, including the dusk and dawn phase. When it is dark, light is most often considered as pollution, with increasing appreciation of its negative ecological effects. Using an Autonomous Surface Vehicle fitted with a hyperspectral irradiance sensor and an acoustic profiler, we detected and quantified the behavior of zooplankton in an unpolluted light environment in the high Arctic polar night and compared the results with that from a light-polluted environment close to our research vessels. First, in environments free of light pollution, the zooplankton community is intimately connected to the ambient light regime and performs synchronized diel vertical migrations in the upper 30 m despite the sun never rising above the horizon. Second, the vast majority of the pelagic community exhibits a strong light-escape response in the presence of artificial light, observed down to 100 m. We conclude that artificial light from traditional sampling platforms affects the zooplankton community to a degree where it is impossible to examine its abundance and natural rhythms within the upper 100 m. This study underscores the need to adjust sampling platforms, particularly in dim-light conditions, to capture relevant physical and biological data for ecological studies. It also highlights a previously unchartered susceptibility to light pollution in a region destined to see significant changes in light climate due to a reduced ice cover and an increased anthropogenic activity.  
  Address Centre for Autonomous Operations and Systems, Department of Biology, NTNU, Trondheim, Norway  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2375-2548 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:29326985; PMCID:PMC5762190 Approved no  
  Call Number LoNNe @ kyba @ Serial 1806  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: