toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author (up) de Jong, M.; Lamers, K.P.; Eugster, M.; Ouyang, J.Q.; Da Silva, A.; Mateman, A.C.; van Grunsven, R.H.A.; Visser, M.E.; Spoelstra, K. url  doi
openurl 
  Title Effects of experimental light at night on extra-pair paternity in a songbird Type Journal Article
  Year 2018 Publication Journal of Experimental Zoology. Part A, Ecological and Integrative Physiology Abbreviated Journal J Exp Zool A Ecol Integr Physiol  
  Volume 329 Issue 8-9 Pages 441-448  
  Keywords animals  
  Abstract Light pollution is increasing worldwide and significantly affects animal behavior. In birds, these effects include advancement of morning activity and onset of dawn song, which may affect extra-pair paternity. Advanced dawn song of males may stimulate females to engage in extra-pair copulations, and the earlier activity onset may affect the males' mate guarding behavior. Earlier work showed an effect of light at night on extra-pair behavior, but this was in an area with other anthropogenic disturbances. Here, we present a two-year experimental study on effects of light at night on extra-pair paternity of great tits (Parus major). Previously dark natural areas were illuminated with white, red, and green LED lamps and compared to a dark control. In 2014, the proportion of extra-pair young in broods increased with distance to the red and white lamps (i.e., at lower light intensities), but decreased with distance to the poles in the dark control. In 2013, we found no effects on the proportion of extra-pair young. The total number of offspring sired by a male was unaffected by artificial light at night in both years, suggesting that potential changes in female fidelity in pairs breeding close to white and red light did not translate into fitness benefits for the males of these pairs. Artificial light at night might disrupt the natural patterns of extra-pair paternity, possibly negates potential benefits of extra-pair copulations and thus could alter sexual selection processes in wild birds.  
  Address Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2471-5638 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:29952126 Approved no  
  Call Number GFZ @ kyba @ Serial 1953  
Permanent link to this record
 

 
Author (up) De Magalhaes Filho, C.D.; Henriquez, B.; Seah, N.E.; Evans, R.M.; Lapierre, L.R.; Dillin, A. url  doi
openurl 
  Title Visible light reduces C. elegans longevity Type Journal Article
  Year 2018 Publication Nature Communications Abbreviated Journal Nat Commun  
  Volume 9 Issue 1 Pages 927  
  Keywords Animals  
  Abstract The transparent nematode Caenorhabditis elegans can sense UV and blue-violet light to alter behavior. Because high-dose UV and blue-violet light are not a common feature outside of the laboratory setting, we asked what role, if any, could low-intensity visible light play in C. elegans physiology and longevity. Here, we show that C. elegans lifespan is inversely correlated to the time worms were exposed to visible light. While circadian control, lite-1 and tax-2 do not contribute to the lifespan reduction, we demonstrate that visible light creates photooxidative stress along with a general unfolded-protein response that decreases the lifespan. Finally, we find that long-lived mutants are more resistant to light stress, as well as wild-type worms supplemented pharmacologically with antioxidants. This study reveals that transparent nematodes are sensitive to visible light radiation and highlights the need to standardize methods for controlling the unrecognized biased effect of light during lifespan studies in laboratory conditions.  
  Address The Howard Hughes Medical Institute, Molecular and Cell Biology Department, Li Ka Shing Center, University of California Berkeley, Berkeley, CA, 94720, USA. dillin@berkeley.edu  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2041-1723 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:29500338; PMCID:PMC5834526 Approved no  
  Call Number GFZ @ kyba @ Serial 1904  
Permanent link to this record
 

 
Author (up) Depner, C.M.; Melanson, E.L.; McHill, A.W.; Wright, K.P.J. url  doi
openurl 
  Title Mistimed food intake and sleep alters 24-hour time-of-day patterns of the human plasma proteome Type Journal Article
  Year 2018 Publication Proceedings of the National Academy of Sciences of the United States of America Abbreviated Journal Proc Natl Acad Sci U S A  
  Volume 115 Issue 23 Pages E5390-E5399  
  Keywords Human Health  
  Abstract Proteomics holds great promise for understanding human physiology, developing health biomarkers, and precision medicine. However, how much the plasma proteome varies with time of day and is regulated by the master circadian suprachiasmatic nucleus brain clock, assessed here by the melatonin rhythm, is largely unknown. Here, we assessed 24-h time-of-day patterns of human plasma proteins in six healthy men during daytime food intake and nighttime sleep in phase with the endogenous circadian clock (i.e., circadian alignment) versus daytime sleep and nighttime food intake out of phase with the endogenous circadian clock (i.e., circadian misalignment induced by simulated nightshift work). We identified 24-h time-of-day patterns in 573 of 1,129 proteins analyzed, with 30 proteins showing strong regulation by the circadian cycle. Relative to circadian alignment, the average abundance and/or 24-h time-of-day patterns of 127 proteins were altered during circadian misalignment. Altered proteins were associated with biological pathways involved in immune function, metabolism, and cancer. Of the 30 circadian-regulated proteins, the majority peaked between 1400 hours and 2100 hours, and these 30 proteins were associated with basic pathways involved in extracellular matrix organization, tyrosine kinase signaling, and signaling by receptor tyrosine-protein kinase erbB-2. Furthermore, circadian misalignment altered multiple proteins known to regulate glucose homeostasis and/or energy metabolism, with implications for altered metabolic physiology. Our findings demonstrate the circadian clock, the behavioral wake-sleep/food intake-fasting cycle, and interactions between these processes regulate 24-h time-of-day patterns of human plasma proteins and help identify mechanisms of circadian misalignment that may contribute to metabolic dysregulation.  
  Address Division of Endocrinology, Metabolism, and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO 80045  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0027-8424 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:29784788 Approved no  
  Call Number GFZ @ kyba @ Serial 1916  
Permanent link to this record
 

 
Author (up) Desaulniers, J.; Desjardins, S.; Lapierre, S.; Desgagné, A. url  doi
openurl 
  Title Sleep Environment and Insomnia in Elderly Persons Living at Home Type Journal Article
  Year 2018 Publication Journal of Aging Research Abbreviated Journal Journal of Aging Research  
  Volume 2018 Issue Pages 1-7  
  Keywords Human Health  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2090-2204 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 2016  
Permanent link to this record
 

 
Author (up) Dimitriadis, C.; Fournari - Konstantinidou, I.; Sourbès, L.; Koutsoubas, D.; Mazaris, A.D. url  doi
openurl 
  Title Reduction of sea turtle population recruitment caused by nightlight: Evidence from the Mediterranean region Type Journal Article
  Year 2018 Publication Ocean & Coastal Management Abbreviated Journal Ocean & Coastal Management  
  Volume 153 Issue Pages 108-115  
  Keywords Animals  
  Abstract The spread of artificial night lighting is increasingly acknowledged as a major threat to global biodiversity. Identifying and exploring the impacts of nightlight pollution upon species behavior, ecology and population dynamics could enhance conservation capacity. Sea turtle hatchlings emerge from nest at night and use visual cues to direct towards the brightest and lowest horizon, eventually leading them to the sea. Nightlight pollution could alter the cues perceived, disorienting the fragile hatchlings. We examined the level of artificial lighting and orientation patterns of sea turtles hatchling, in Zakynthos Island, Greece, one of the main nesting rookeries of the loggerheads (Caretta caretta) in the Mediterranean Sea. We analyzed movement patterns of 5967 hatchlings from 230 nests, and demonstrate that nightlight pollution could reduce population recruitment by more than 7%, suggesting that mitigation measures should become a high conservation priority. Our results further suggest that the responses of sea turtle hatchlings to artificial nighttime lighting could vary significantly depending on various factors, either anthropogenic or natural. Local conditions operating at the nesting site level determine the fine scale responses of hatchlings, thus conservation measures should be drawn in respect to site-specific properties.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0964-5691 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number LoNNe @ kyba @ Serial 1792  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: