|   | 
Details
   web
Records
Author (up) Fotios, S.; Monteiro, A.L.; Uttley, J.
Title Evaluation of pedestrian reassurance gained by higher illuminances in residential streets using the day–dark approach Type Journal Article
Year 2018 Publication Lighting Research & Technology Abbreviated Journal Lighting Research & Technology
Volume in press Issue Pages
Keywords Vision; Psychology; Security
Abstract A field study was conducted to investigate how changes in the illuminance affect pedestrian reassurance when walking after dark in an urban location. The field study was conducted in daytime and after dark in order to employ the day–dark approach to analysis of optimal lighting. The results suggest that minimum illuminance is a better predictor of reassurance than is mean illuminance. For a day–dark difference of 0.5 units on a 6-point response scale, the results suggest a minimum horizontal illuminance of approximately 2.0 lux.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1477-1535 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 2159
Permanent link to this record
 

 
Author (up) Fotios, S.; Yao, Q.
Title The association between correlated colour temperature and scotopic/photopic ratio Type Journal Article
Year 2018 Publication Lighting Research & Technology Abbreviated Journal Lighting Research & Technology
Volume 35 Issue 10 Pages 1365-1374
Keywords Vision; Lighting
Abstract The scotopic/photopic ratio (S/P) is a parameter that may be considered in the design of road lighting. This paper compares the S/P ratio and correlated colour temperature (CCT) for 297 light source spectra identified in IES Technical Memorandum TM-30-15 to test the assumption that higher S/P ratios demand higher CCTs. The results suggest that, for a given lamp type, there is a strong association between S/P ratio and CCT, and hence that for a given CCT only a small variation in S/P ratio is available. However, the results also suggest that a larger variation in S/P ratio is possible if the lighting designer is able to consider a change in lamp type.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1477-1535 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 1954
Permanent link to this record
 

 
Author (up) Froidevaux, J.S.P.; Fialas, P.C.; Jones, G.; Pettorelli, N.; Merchant, N.
Title Catching insects while recording bats: impacts of light trapping on acoustic sampling Type Journal Article
Year 2018 Publication Remote Sensing in Ecology and Conservation Abbreviated Journal Remote Sens Ecol Conserv
Volume 4 Issue 3 Pages 240-247
Keywords Animals
Abstract Collecting information on bat prey availability usually involves the use of light traps to capture moths and flies that constitute the main prey items of most insectivorous bats. However, despite the recent awareness on the adverse effects of light on bats, little is known regarding the potential impacts of light trapping on the bat sampling outcomes when passive acoustic sampling and light trapping are implemented simultaneously. Using a before–after experimental design that involved the installation of a 6 W actinic light trap 1 m away from the bat detector, we tested the predictions that (1) slow‐flying bat species will be less active when the light trap is present, while the opposite will be true for fast‐flying species; and (2) bat species richness will be lower at lit conditions compared to dark ones. Our results suggest that the use of light traps in combination with bat detectors may considerably influence the outcomes of acoustic sampling. Although the activity of fast‐flying bat species did not differ between the two treatments, we found that the activity of slow‐flying ones such as Rhinolophus ferrumequinum and Rhinolophus hipposideros decreased significantly at lit conditions. Furthermore, we recorded fewer bat species when the light trap was deployed. To overcome this issue, we strongly recommend either (1) placing light traps at a considerable distance from bat detectors; or (2) using light traps during the night that follows the bat sampling if sampling needs to be at the same position; or (3) deploying non‐attractant insect traps such as Malaise traps if Lepidoptera is not the main order targeted.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2056-3485 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number NC @ ehyde3 @ Serial 2092
Permanent link to this record
 

 
Author (up) Fu, D.; Xia, X.; Duan, M.; Zhang, X.; Li, X.; Wang, J.; Liu, J.
Title Mapping nighttime PM 2.5 from VIIRS DNB using a linear mixed-effect model Type Journal Article
Year 2018 Publication Atmospheric Environment Abbreviated Journal Atmospheric Environment
Volume 178 Issue Pages 214-222
Keywords Remote Sensing
Abstract Estimation of particulate matter with aerodynamic diameter less than 2.5 μm (PM2.5) from daytime satellite aerosol products is widely reported in the literature; however, remote sensing of nighttime surface PM2.5 from space is very limited. PM2.5 shows a distinct diurnal cycle and PM2.5 concentration at 1:00 local standard time (LST) has a linear correlation coefficient (R) of 0.80 with daily-mean PM2.5. Therefore, estimation of nighttime PM2.5 is required toward an improved understanding of temporal variation of PM2.5 and its effects on air quality. Using data from the Day/Night Band (DNB) of the Visible Infrared Imaging Radiometer Suite (VIIRS) and hourly PM2.5 data at 35 stations in Beijing, a mixed-effect model is developed here to estimate nighttime PM2.5 from nighttime light radiance measurements based on the assumption that the DNB-PM2.5 relationship is constant spatially but varies temporally. Cross-validation showed that the model developed using all stations predict daily PM2.5 with mean determination coefficient (R2) of 0.87 ±± 0.12, 0.83 ±0.10±0.10, 0.87 ±± 0.09, 0.83 ±± 0.10 in spring, summer, autumn and winter. Further analysis showed that the best model performance was achieved in urban stations with average cross-validation R2 of 0.92. In rural stations, DNB light signal is weak and was likely smeared by lunar illuminance that resulted in relatively poor estimation of PM2.5. The fixed and random parameters of the mixed-effect model in urban stations differed from those in suburban stations, which indicated that the assumption of the mixed-effect model should be carefully evaluated when used at a regional scale.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1352-2310 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number LoNNe @ kyba @ Serial 1814
Permanent link to this record
 

 
Author (up) Gago-Calderón, A.; Hermoso-Orzáez, M.; De Andres-Diaz, J.; Redrado-Salvatierra, G.
Title Evaluation of Uniformity and Glare Improvement with Low Energy Efficiency Losses in Street Lighting LED Luminaires Using Laser-Sintered Polyamide-Based Diffuse Covers Type Journal Article
Year 2018 Publication Energies Abbreviated Journal Energies
Volume 11 Issue 4 Pages 816
Keywords Lighting
Abstract Energy saving in street lighting is garnering more interest and has become a priority in municipal management. Therefore, LED luminaires are gradually becoming prevalent in our cities. Beyond their energy/economic saving potential, quality in public lighting installations concerns aspects such as uniformity and glare which must be maintained if not improved in any installation renewal project using this technology. The high light intensity generated in a discrete point in LED packages and its directional nature result in significant deficiencies in these last two parameters. To soften these effects, translucent covers are being used as one of the most common solutions with the drawback of significant light intensity losses. The objective of this paper is to evaluate the behavior of LED luminaire’s polyamide-based optical covers manufactured with a laser-sintered process. These are designed to improve glare and uniformity output, to minimize light output reductions, and to be industrially manufactured with no increment of cost for their lighting equipment compared to conventional transparent polycarbonate solutions. A laboratory and field lighting test study has been applied to different covers with the same LED lamp and luminaire to compare the performance of three different solutions built with different polymeric materials and with different light transmission surface textures. The photometric results have been observed and discussed to demonstrate the ability to significantly improve the lighting performance of LED luminaires—illuminance and uniformity levels and discomfort and disability glare indexes— using an improved optic cover.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1996-1073 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 1844
Permanent link to this record