|   | 
Details
   web
Records
Author (up) Grubisic, M.
Title Waters under Artificial Lights: Does Light Pollution Matter for Aquatic Primary Producers? Type Journal Article
Year 2018 Publication Limnology and Oceanography Bulletin Abbreviated Journal
Volume 27 Issue 3 Pages 76-81
Keywords Ecology
Abstract Bright night lights have become a symbol of development and prosperity in the modern world. But have you ever wondered how artificial light at night (ALAN) may be affecting living beings in our cities, and how it may be affecting us? As artificial illumination is transforming nocturnal environments around the world, light pollution associated with its use is becoming a topic of increasing interest in the scientific and public communities. Light pollution disrupts natural light regimes in many regions of the world, raising concerns about ecological and health impacts of this novel anthropogenic pressure. Most obviously, ALAN can influence night‐active animals in urban and suburban areas, and most research in this growing field focuses on terrestrial organisms such as bats, birds, and insects. Effects on aquatic ecosystems are much less known. In particular, aquatic primary producers, such as microalgae, cyanobacteria, and plants, have rarely been studied despite their critical positioning in the base of aquatic food webs and the fundamental role that light plays in their ecology. For primary producers, light is a key source of both energy and environmental information; it influences their growth, production, and community structure. ALAN has therefore a large potential to influence their communities and induce bottom‐up changes to aquatic ecosystems and ecosystem functions.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 1966
Permanent link to this record
 

 
Author (up) Grubisic, M.; Singer, G.; Bruno, M.C.; van Grunsven, R.H.A.; Manfrin, A.; Monaghan, M.T.; Hölker, F.
Title A pigment composition analysis reveals community changes in pre-established stream periphyton under low-level artificial light at night Type Journal Article
Year 2018 Publication Limnologica Abbreviated Journal
Volume 69 Issue Pages 55-58
Keywords Plants; Ecology
Abstract Freshwaters are increasingly exposed to artificial light at night (ALAN), yet the consequences for aquatic primary producers remain largely unknown. We used stream-side flumes to expose three-week-old periphyton to LED light. Pigment composition was used to infer community changes in LED-lit and control periphyton before and after three weeks of treatment. The proportion of diatoms/chrysophytes decreased (14%) and cyanobacteria increased (17%) in lit periphyton in spring. This may reduce periphyton nutritional quality in artificially-lit waters.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0075-9511 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number LoNNe @ schroer @ Serial 1791
Permanent link to this record
 

 
Author (up) Grubisic, M.; Van Grunsven, R.H.A.; Kyba, C.C.M.; Manfrin, A.; Hölker, F.
Title Insect declines and agroecosystems: does light pollution matter? Type Journal Article
Year 2018 Publication Annals of Applied Biology Abbreviated Journal Ann. of Appl. Biol.
Volume 173 Issue 1 Pages 180-189
Keywords Animals; Ecology; Review
Abstract Drastic declines in insect populations, ‘Ecological Armageddon’, have recently gained increased attention in the scientific community, and are commonly considered to be the consequence of large‐scale factors such as land‐use changes, use of pesticides, climate change and habitat fragmentation. Artificial light at night (ALAN), a pervasive global change that strongly impacts insects, remains, however, infrequently recognised as a potential contributor to the observed declines. Here, we provide a summary of recent evidence of impacts of ALAN on insects and discuss how these impacts can drive declines in insect populations in light‐polluted areas. ALAN can increase overall environmental pressure on insect populations, and this is particularly important in agroecosystems where insect communities provide important ecosystem services (such as natural pest control, pollination, conservation of soil structure and fertility and nutrient cycling), and are already under considerable environmental pressure. We discuss how changes in insect populations driven by ALAN and ALAN itself may hinder these services to influence crop production and biodiversity in agricultural landscapes. Understanding the contribution of ALAN and other factors to the decline of insects is an important step towards mitigation and the recovery of the insect fauna in our landscapes. In future studies, the role of increased nocturnal illumination also needs to be examined as a possible causal factor of insect declines in the ongoing ‘Ecological Armageddon’, along with the more commonly examined factors. Given the large scale of agricultural land use and the potential of ALAN to indirectly and directly impact crop production and biodiversity, a better understanding of effects of ALAN in agroecosystems is urgently needed.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 1939
Permanent link to this record
 

 
Author (up) Grubisic, M.; van Grunsven, R.H.A.; Manfrin, A.; Monaghan, M.T.; Hölker, F.
Title A transition to white LED increases ecological impacts of nocturnal illumination on aquatic primary producers in a lowland agricultural drainage ditch Type Journal Article
Year 2018 Publication Environmental Pollution Abbreviated Journal Environmental Pollution
Volume 240 Issue Pages 630-638
Keywords Plants; Ecology
Abstract The increasing use of artificial light at night (ALAN) has led to exposure of freshwater ecosystems to light pollution worldwide. Simultaneously, the spectral composition of nocturnal illumination is changing, following the current shift in outdoor lighting technologies from traditional light sources to light emitting diodes (LED). LEDs emit broad-spectrum white light, with a significant amount of photosynthetically active radiation, and typically a high content of blue light that regulates circadian rhythms in many organisms. While effects of the shift to LED have been investigated in nocturnal animals, its impact on primary producers is unknown. We performed three field experiments in a lowland agricultural drainage ditch to assess the impacts of a transition from high-pressure sodium (HPS) to white LED illumination (color temperature 4000 K) on primary producers in periphyton. In all experiments, we compared biomass and pigment composition of periphyton grown under a natural light regime to that of periphyton exposed to nocturnal HPS or, consecutively, LED light of intensities commonly found in urban waters (approximately 20 lux). Periphyton was collected in time series (1–13 weeks). We found no effect of HPS light on periphyton biomass; however, following a shift to LED the biomass decreased up to 62%. Neither light source had a substantial effect on pigment composition. The contrasting effects of the two light sources on biomass may be explained by differences in their spectral composition, and in particular the blue content. Our results suggest that spectral composition of the light source plays a role in determining the impacts of ALAN on periphyton and that the ongoing transition to LED may increase the ecological impacts of artificial lighting on aquatic primary producers. Reduced biomass in the base of the food web can impact ecosystem functions such as productivity and food supply for higher trophic levels in nocturnally-lit ecosystems.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0269-7491 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 1900
Permanent link to this record
 

 
Author (up) Guetté, A.; Godet, L.; Juigner, M.; Robin, M.
Title Worldwide increase in Artificial Light At Night around protected areas and within biodiversity hotspots Type Journal Article
Year 2018 Publication Biological Conservation Abbreviated Journal Biological Conservation
Volume 223 Issue Pages 97-103
Keywords Remote Sensing; Ecology; Conservation
Abstract Artificial Light At Night (ALAN) has several adverse impacts on biodiversity, and it has been recently used as a proxy to monitor human encroachment on landscapes at large spatial scales. The extent to which ALAN affects protected areas (PAs) and biodiversity hotspots (BHs) remains however untested at large spatial scales. We used this proxy to assess the spatial and temporal trends in the anthropization at a global scale within and around PAs and BHs. We found that ALAN is low and stable over time within PAs, but is the highest in a first outer belt (<25 km) around PAs, and tends to increase in a second outer belt (25–75 km). In the meantime, ALAN is higher within BHs than outside, and is even the highest and increasing over time in an inner belt, close to their periphery. Our results suggest that although PAs are creating safety zones in terms of ALAN, they tend to be more and more isolated from each other by a concentric human encroachment. In contrast, BHs are submitted to an increasing human pressure, especially in their inner periphery. Overall, we suggest integrating ALAN in large-scale conservation policies.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0006-3207 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 1890
Permanent link to this record