|   | 
Details
   web
Records
Author (up) Ernst, S.; Łabuz, M.; Środa, K.; Kotulski, L.
Title Graph-Based Spatial Data Processing and Analysis for More Efficient Road Lighting Design Type Journal Article
Year 2018 Publication Sustainability Abbreviated Journal Sustainability
Volume 10 Issue 11 Pages 3850
Keywords Lighting
Abstract The efficiency and affordability of modern street lighting equipment are improving quickly, but systems used to manage and design lighting installations seem to lag behind. One of their problems is the lack of consistent methods to integrate all relevant data. Tools used to manage lighting infrastructure are not aware of the geographic characteristics of the lit areas, and photometric calculation software requires a lot of manual editing by the designer, who needs to assess the characteristics of roads, define the segments, and assign the lighting classes according to standards. In this paper, we propose a graph-based method to integrate geospatial data from various sources to support the process of data preparation for photometric calculations. The method uses graph transformations to define segments and assign lighting classes. A prototype system was developed to conduct experiments using real-world data. The proposed approach is compared to results obtained by professional designers in a case study; the method was also applied to several European cities to assess its efficiency. The obtained results are much more fine-grained than those yielded by the traditional approach; as a result, the lighting is more adequate, especially when used in conjunction with automated optimisation tools.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2071-1050 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 2051
Permanent link to this record
 

 
Author (up) Farkas, T.D.; Kiràly, T.; Pardy, T.; Rang, T.; Rang, G.
Title Application of power line communication technology in street lighting control Type Journal Article
Year 2018 Publication International Journal of Design & Nature and Ecodynamics Abbreviated Journal Int. J. DNE
Volume 13 Issue 2 Pages 176-186
Keywords Lighting
Abstract Rapidly increasing usage of telecommunication systems causes new transmission technologies and networks to emerge. Not only the efficiency, reliability and accessibility of the network are important, but also the economic issues. One cost-effective solution could be power line communication (PLC) technology, which transmits data using the existing electricity infrastructure. The application of this communication technique is an attractive and innovative solution for the realization of smart cities and smart homes. With intelligent control networks, energy savings can be optimized and the operating as well as maintenance costs can be reduced. Since outdoor lighting systems are the major consumers of electricity, to create a modern, energy-efficient city, intelligent street lighting control is needed. This paper provides an overview of power line communication principles including the theoretical background of data communication, modulation techniques, channel access methods, protocols, disturbances and noises. Furthermore, in order to highlight the benefits of a PLC-based street lighting control system, a pilot project will be presented.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1755-7437 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number NC @ ehyde3 @ Serial 2091
Permanent link to this record
 

 
Author (up) Farnworth, B.; Innes, J.; Kelly, C.; Littler, R.; Waas, J.R.
Title Photons and foraging: Artificial light at night generates avoidance behaviour in male, but not female, New Zealand weta Type Journal Article
Year 2018 Publication Environmental Pollution (Barking, Essex : 1987) Abbreviated Journal Environ Pollut
Volume 236 Issue Pages 82-90
Keywords Animals
Abstract Avoiding foraging under increased predation risk is a common anti-predator behaviour. Using artificial light to amplify predation risk at ecologically valuable sites has been proposed to deter introduced mice (Mus musculus) and ship rats (Rattus rattus) from degrading biodiversity in island ecosystems. However, light may adversely affect native species; in particular, little is known about invertebrate responses to altered lighting regimes. We investigated how endemic orthopterans responded to artificial light at Maungatautari Ecological Island (Waikato, New Zealand). We predicted that based on their nocturnal behaviour, ecology and evolutionary history, tree weta (Hemideina thoracica) and cave weta (Rhaphidophoridae) would reduce their activity under illumination. Experimental stations (n=15) experienced three evenings under each treatment (order randomised): (a) light (illuminated LED fixture), (b) dark (unilluminated LED fixture) and (c) baseline (no lighting fixture). Weta visitation rates were analysed from images captured on infra-red trail cameras set up at each station. Light significantly reduced the number of observations of cave (71.7% reduction) and tree weta (87.5% reduction). In observations where sex was distinguishable (53% of all visits), male tree weta were observed significantly more often (85% of visits) than females (15% of visits) and while males avoided illuminated sites, no detectable difference was observed across treatments for females. Sex could not be distinguished for cave weta. Our findings have implications for the use of light as a novel pest management strategy, and for the conservation of invertebrate diversity and abundance within natural and urban ecosystems worldwide that may be affected by light pollution.
Address Biological Sciences, School of Science, University of Waikato, Private Bag 3105, Hamilton, New Zealand. Electronic address: waasur@waikato.ac.nz
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0269-7491 ISBN Medium
Area Expedition Conference
Notes PMID:29414377 Approved no
Call Number GFZ @ kyba @ Serial 1856
Permanent link to this record
 

 
Author (up) Fehrer, D.; Krarti, M.
Title Spatial distribution of building energy use in the United States through satellite imagery of the earth at night Type Journal Article
Year 2018 Publication Building and Environment Abbreviated Journal Building and Environment
Volume 142 Issue Pages 252-264
Keywords remote sensing
Abstract Despite the importance of geospatial analysis of energy use in buildings, the data available for such exercises is limited. A potential solution is to use geospatial information, such as that obtained from satellites, to disaggregate building energy use data to a more useful scale. Many researchers have used satellite imagery to estimate the extent of human activities, including building energy use and population distribution. Much of the reported work has been carried out in rapidly developing countries such as India and China where urban development is dynamic and not always easy to measure. In countries with less rapid urbanization, such as the United States, there is still value in using satellite imagery to estimate building energy use for the purposes of identifying energy efficiency opportunities and planning electricity transmission. This study evaluates nighttime light imagery obtained from the VIIRS instrument aboard the SUOMI NPP satellite as a predictor of building energy use intensity within states, counties, and cities in the United States. It is found that nighttime lights can explain upwards of 90% of the variability in energy consumption in the United States, depending on conditions and geospatial scale. The results of this research are used to generate electricity and fuel consumption maps of the United States with a resolution of less than 200 square meters. The methodologies undertaken in this study can be replicated globally to create more opportunities for geospatial energy analysis without the hurdles often associated with disaggregated building energy use data collection.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0360-1323 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 1938
Permanent link to this record
 

 
Author (up) Figura, J.; Haughwout, C.; Cahoy, K.; Welle, R.; Hardy, B.; Pack, D.; Bosh, A.
Title Initial Demonstration of an Uplink LED Beacon to a Low Earth Orbiting CubeSat Type Journal Article
Year 2018 Publication Journal of Small Satellites Abbreviated Journal
Volume 7 Issue 2 Pages 719-732
Keywords Remote Sensing
Abstract In this study, an uplink light-emitting diode (LED) beacon that can enable a CubeSat to locate a laser communication ground station was designed, constructed, and tested, and detection of the beacon from low Earth orbit (LEO) with a CMOS camera on the AeroCube-5 CubeSat was demonstrated. The LED beacon described is an alternative to the near-infrared laser beacons commonly used in laser communication systems, and has the potential to be cheaper, easier to point, and to require less regulatory coordination than a laser beacon, while performing the same function. An optical design is detailed, consisting of an array of 80 green LEDs with a center wavelength of 528 nm, producing 15.9 watts of free-space optical power, focused to a beamwidth of 8.12 degrees full-widthhalf-max (FWHM). A link budget is presented that shows the beacon is detectable by a CubeSat-mounted camera with a 7.9 mm diameter aperture and a silicon CMOS detector. A prototype beacon comprised of an LED array, focusing optics, thermal control, and tracking mechanisms was designed and constructed, and laboratory measurements of the beam profile and optical power of the prototype beacon using an optical power meter are presented herein. A field test is also described, in which the beacon was deployed at Wallace Astrophysical Observatory in the early morning of May 15, 2017 and imaged with a camera on AeroCube-5. The array is successfully identified in a sequence of five images taken by the CubeSat, demonstrating the viability of LED uplink beacons with CubeSat imagers.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number NC @ ehyde3 @ Serial 2108
Permanent link to this record