toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author (up) Bian, Z.; Cheng, R.; Wang, Y.; Yang, Q.; Lu, C. url  doi
openurl 
  Title Effect of green light on nitrate reduction and edible quality of hydroponically grown lettuce ( Lactuca sativa L.) under short-term continuous light from red and blue light-emitting diodes Type Journal Article
  Year 2018 Publication Environmental and Experimental Botany Abbreviated Journal Environmental and Experimental Botany  
  Volume 153 Issue Pages 63-71  
  Keywords Plants  
  Abstract Most leafy vegetables can accumulate large amounts of nitrate, which are often associated with harmful effects on human health. Nitrate assimilation in plants is determined by various growth conditions, especially light conditions including light intensity, light duration and light spectral composition. Red and blue light are the most important since both drive photosynthesis. Increasingly, recent evidence demonstrates a role for green light in the regulation of plant growth and development by regulating the expression of some specific genes. However, the effect of green light on nitrate assimilation has been underestimated. In this study, lettuce (Lactuca sativa L. cv. Butterhead) was treated with continuous light (CL) for 48 h by combined red and blue light-emitting diodes (LEDs) supplemented with or without green LED in an environment-controlled growth chamber. The results showed that nitrate reductase (NR) and nitrite reductase (NiR) related-gene expression and nitrate assimilation enzyme activities were affected by light spectral composition and light duration of CL. Adding green light to red and blue light promoted NR and NiR expressions at 24 h, subsequently, it reduced expression of these genes during CL. Compared with red and blue LEDs, green light supplementation significantly increased NR, NiR, glutamate synthase (GOGAT) and glutamine synthetase (GS) activities. Green-light supplementation under red and blue light was more efficient in promoting nutritional values by maintaining high net photosynthetic rates (Pn) and maximal photochemical efficiency (Fv/Fm).  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0098-8472 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 1915  
Permanent link to this record
 

 
Author (up) Bian, Z.; Yang, Q.; Li, T.; Cheng, R.; Barnett, Y.; Lu, C. url  doi
openurl 
  Title Study of the beneficial effects of green light on lettuce grown under short-term continuous red and blue light-emitting diodes Type Journal Article
  Year 2018 Publication Physiologia Plantarum Abbreviated Journal Physiol Plant  
  Volume 164 Issue 2 Pages 226-240  
  Keywords Plants  
  Abstract Red and blue light are the most important light spectra for driving photosynthesis to produce adequate crop yield. It is also believed that green light may contribute to adaptations to growth. However, the effects of green light, which can trigger specific and necessary responses of plant growth, have been underestimated in the past. In this study, lettuce (Lactuca sativa L.) was exposed to different continuous light (CL) conditions for 48 h by a combination of red and blue light-emitting diodes (LEDs) supplemented with or without green LEDs, in an environmental-controlled growth chamber. Green light supplementation enhanced photosynthetic capacity by increasing net photosynthetic rates (Pn ), maximal photochemical efficiency (Fv /Fm ), electron transport for carbon fixation (JPSII ) and chlorophyll content in plants under the CL treatment. Green light decreased malondialdehyde and H2 O2 accumulation by increasing the activities of superoxide dismutase (SOD; EC 1.15.1.1) and ascorbate peroxidase (APX; EC 1.11.1.11) after 24 h of CL. Supplemental green light significantly increased the expression of photosynthetic genes LHCb and PsbA from 6 to 12 h, and these gene expression were maintained at higher levels than those under other light conditions between 12 and 24 h. However, a notable down-regulation of both LHCb and PsbA was observed during 24 to 48 h. These results indicate that the effects of green light on lettuce plant growth, via enhancing activity of particular components of antioxidantive enzyme system and promoting of LHCb and PsbA expression to maintain higher photosynthetic capacity, alleviated a number of the negative effects caused by CL.  
  Address School of Animal, Rural and Environmental Science, Brackenhurst Campus, Nottingham Trent University, NG25 0QF, UK  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-9317 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:29493775 Approved no  
  Call Number GFZ @ kyba @ Serial 1905  
Permanent link to this record
 

 
Author (up) Bombieri, G.; Delgado, M. del M.; Russo, L.F.; Garrote, P.J.; López-Bao, J.V.; Fedriani, J.M.; Penteriani, V. url  doi
openurl 
  Title Patterns of wild carnivore attacks on humans in urban areas Type Journal Article
  Year 2018 Publication Scientific Reports Abbreviated Journal Sci Rep  
  Volume 8 Issue 1 Pages  
  Keywords Animals  
  Abstract Attacks by wild carnivores on humans represent an increasing problem in urban areas across North America and their frequency is expected to rise following urban expansion towards carnivore habitats. Here, we analyzed records of carnivore attacks on humans in urban areas of the U.S. and Canada between 1980 and 2016 to analyze the general patterns of the attacks, as well as describe the landscape structure and, for those attacks occurring at night, the light conditions at the site of the attacks. We found that several behavioral and landscape-related factors were recurrent elements in the attacks recorded. The species for which the attack locations were available (coyote and black bear) attacked in areas with different conditions of landscape structure and artificial light. Specifically, black bears attacked more frequently in areas with abundant and aggregated vegetation cover and scarce buildings and roads, while coyotes attacked in a broader range of landscape conditions. At night, black bears attacked in generally darker areas than coyotes. By providing a comprehensive perspective of the phenomenon, this study will improve our understanding of how effective strategies aimed at reducing the frequency of risky encounters in urban areas should be developed.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2045-2322 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 2130  
Permanent link to this record
 

 
Author (up) Borck, P.C.; Batista, T.M.; Vettorazzi, J.F.; Soares, G.M.; Lubaczeuski, C.; Guan, D.; Boschero, A.C.; Vieira, E.; Lazar, M.A.; Carneiro, E.M. url  doi
openurl 
  Title Nighttime light exposure enhances Rev-erbalpha-targeting microRNAs and contributes to hepatic steatosis Type Journal Article
  Year 2018 Publication Metabolism: Clinical and Experimental Abbreviated Journal Metabolism  
  Volume 85 Issue Pages 250-258  
  Keywords Animals  
  Abstract OBJECTIVE: The exposure to artificial light at night (ALAN) disrupts the biological rhythms and has been associated with the development of metabolic syndrome. MicroRNAs (miRNAs) display a critical role in fine-tuning the circadian system and energy metabolism. In this study, we aimed to assess whether altered miRNAs expression in the liver underlies metabolic disorders caused by disrupted biological rhythms. RESULTS: We found that C3H/HePas mice exposed to ALAN developed obesity, and hepatic steatosis, which was paralleled by decreased expression of Rev-erbalpha and up-regulation of its lipogenic targets ACL and FAS in liver. Furthermore, the expression of Rev-erbalpha-targeting miRNAs, miR-140-5p, 185-5p, 326-5p and 328-5p were increased in this group. Consistently, overexpression of these miRNAs in primary hepatocytes reduced Rev-erbalpha expression at the mRNA and protein levels. Importantly, overexpression of Rev-erbalpha-targeting miRNAs increased mRNA levels of Acly and Fasn. CONCLUSION: Thus, altered miRNA profile is an important mechanism underlying the disruption of the peripheral clock caused by exposure to ALAN, which could lead to hepatic steatosis.  
  Address Obesity and Comorbidities Research Center, Institute of Biology, University of Campinas/UNICAMP, Campinas, SP, Brazil; Department of Structural and Functional Biology, Institute of Biology, University of Campinas/UNICAMP, Campinas, SP, Brazil  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0026-0495 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:29751019 Approved no  
  Call Number GFZ @ kyba @ Serial 1891  
Permanent link to this record
 

 
Author (up) Borges, R.M. openurl 
  Title Dark Matters: Challenges of Nocturnal Communication Between Plants and Animals in Delivery of Pollination Services Type Journal Article
  Year 2018 Publication Yale Journal of Biology and Medicine Abbreviated Journal  
  Volume 91 Issue 1 Pages 33-42  
  Keywords Plants; Animals  
  Abstract The night is a special niche characterized by dim light, lower temperatures, and higher humidity compared to the day. Several animals have made the transition from the day into the night and have acquired unique adaptations to cope with the challenges of performing nocturnal activities. Several plant species have opted to bloom at night, possibly as a response to aridity to prevent excessive water loss through evapotranspiration since flowering is often a water-demanding process, or to protect pollen from heat stress. Nocturnal pollinators have visual adaptations to function under dim light conditions but may also trade off vision against olfaction when they are dependent on nectar-rewarding and scented flowers. Nocturnal pollinators may use CO2 and humidity cues emanating from freshly-opened flowers as indicators of nectar-rich resources. Some endothermic nocturnal insect pollinators are attracted to thermogenic flowers within which they remain to obtain heat as a reward to increase their energy budget. This review focuses on mechanisms that pollinators use to find flowers at night, and the signals that nocturnally blooming flowers may employ to attract pollinators under dim light conditions. It also indicates gaps in our knowledge. While millions of years of evolutionary time have given pollinators and plants solutions to the delivery of pollination services and to the offering of appropriate rewards, this history of successful evolution is being threatened by artificial light at night. Excessive and inappropriate illumination associated with anthropogenic activities has resulted in significant light pollution which serves to undermine life processes governed by dim light.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 1832  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: