toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author (up) Depner, C.M.; Melanson, E.L.; McHill, A.W.; Wright, K.P.J. url  doi
openurl 
  Title Mistimed food intake and sleep alters 24-hour time-of-day patterns of the human plasma proteome Type Journal Article
  Year 2018 Publication Proceedings of the National Academy of Sciences of the United States of America Abbreviated Journal Proc Natl Acad Sci U S A  
  Volume 115 Issue 23 Pages E5390-E5399  
  Keywords Human Health  
  Abstract Proteomics holds great promise for understanding human physiology, developing health biomarkers, and precision medicine. However, how much the plasma proteome varies with time of day and is regulated by the master circadian suprachiasmatic nucleus brain clock, assessed here by the melatonin rhythm, is largely unknown. Here, we assessed 24-h time-of-day patterns of human plasma proteins in six healthy men during daytime food intake and nighttime sleep in phase with the endogenous circadian clock (i.e., circadian alignment) versus daytime sleep and nighttime food intake out of phase with the endogenous circadian clock (i.e., circadian misalignment induced by simulated nightshift work). We identified 24-h time-of-day patterns in 573 of 1,129 proteins analyzed, with 30 proteins showing strong regulation by the circadian cycle. Relative to circadian alignment, the average abundance and/or 24-h time-of-day patterns of 127 proteins were altered during circadian misalignment. Altered proteins were associated with biological pathways involved in immune function, metabolism, and cancer. Of the 30 circadian-regulated proteins, the majority peaked between 1400 hours and 2100 hours, and these 30 proteins were associated with basic pathways involved in extracellular matrix organization, tyrosine kinase signaling, and signaling by receptor tyrosine-protein kinase erbB-2. Furthermore, circadian misalignment altered multiple proteins known to regulate glucose homeostasis and/or energy metabolism, with implications for altered metabolic physiology. Our findings demonstrate the circadian clock, the behavioral wake-sleep/food intake-fasting cycle, and interactions between these processes regulate 24-h time-of-day patterns of human plasma proteins and help identify mechanisms of circadian misalignment that may contribute to metabolic dysregulation.  
  Address Division of Endocrinology, Metabolism, and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO 80045  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0027-8424 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:29784788 Approved no  
  Call Number GFZ @ kyba @ Serial 1916  
Permanent link to this record
 

 
Author (up) Desaulniers, J.; Desjardins, S.; Lapierre, S.; Desgagné, A. url  doi
openurl 
  Title Sleep Environment and Insomnia in Elderly Persons Living at Home Type Journal Article
  Year 2018 Publication Journal of Aging Research Abbreviated Journal Journal of Aging Research  
  Volume 2018 Issue Pages 1-7  
  Keywords Human Health  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2090-2204 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 2016  
Permanent link to this record
 

 
Author (up) Dimitriadis, C.; Fournari - Konstantinidou, I.; Sourbès, L.; Koutsoubas, D.; Mazaris, A.D. url  doi
openurl 
  Title Reduction of sea turtle population recruitment caused by nightlight: Evidence from the Mediterranean region Type Journal Article
  Year 2018 Publication Ocean & Coastal Management Abbreviated Journal Ocean & Coastal Management  
  Volume 153 Issue Pages 108-115  
  Keywords Animals  
  Abstract The spread of artificial night lighting is increasingly acknowledged as a major threat to global biodiversity. Identifying and exploring the impacts of nightlight pollution upon species behavior, ecology and population dynamics could enhance conservation capacity. Sea turtle hatchlings emerge from nest at night and use visual cues to direct towards the brightest and lowest horizon, eventually leading them to the sea. Nightlight pollution could alter the cues perceived, disorienting the fragile hatchlings. We examined the level of artificial lighting and orientation patterns of sea turtles hatchling, in Zakynthos Island, Greece, one of the main nesting rookeries of the loggerheads (Caretta caretta) in the Mediterranean Sea. We analyzed movement patterns of 5967 hatchlings from 230 nests, and demonstrate that nightlight pollution could reduce population recruitment by more than 7%, suggesting that mitigation measures should become a high conservation priority. Our results further suggest that the responses of sea turtle hatchlings to artificial nighttime lighting could vary significantly depending on various factors, either anthropogenic or natural. Local conditions operating at the nesting site level determine the fine scale responses of hatchlings, thus conservation measures should be drawn in respect to site-specific properties.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0964-5691 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number LoNNe @ kyba @ Serial 1792  
Permanent link to this record
 

 
Author (up) Dimovski, A.M.; Robert, K.A. url  doi
openurl 
  Title Artificial light pollution: Shifting spectral wavelengths to mitigate physiological and health consequences in a nocturnal marsupial mammal Type Journal Article
  Year 2018 Publication Journal of Experimental Zoology. Part A, Ecological and Integrative Physiology Abbreviated Journal J Exp Zool A Ecol Integr Physiol  
  Volume 329 Issue 8-9 Pages 497-505  
  Keywords Animals; Lighting  
  Abstract The focus of sustainable lighting tends to be on reduced CO2 emissions and cost savings, but not on the wider environmental effects. Ironically, the introduction of energy-efficient lighting, such as light emitting diodes (LEDs), may be having a great impact on the health of wildlife. These white LEDs are generated with a high content of short-wavelength 'blue' light. While light of any kind can suppress melatonin and the physiological processes it regulates, these short wavelengths are potent suppressors of melatonin. Here, we manipulated the spectral composition of LED lights and tested their capacity to mitigate the physiological and health consequences associated with their use. We experimentally investigated the impact of white LEDs (peak wavelength 448 nm; mean irradiance 2.87 W/m(2) ), long-wavelength shifted amber LEDs (peak wavelength 605 nm; mean irradiance 2.00 W/m(2) ), and no lighting (irradiance from sky glow < 0.37 x 10(-3) W/m(2) ), on melatonin production, lipid peroxidation, and circulating antioxidant capacity in the tammar wallaby (Macropus eugenii). Night-time melatonin and oxidative status were determined at baseline and again following 10 weeks exposure to light treatments. White LED exposed wallabies had significantly suppressed nocturnal melatonin compared to no light and amber LED exposed wallabies, while there was no difference in lipid peroxidation. Antioxidant capacity declined from baseline to week 10 under all treatments. These results provide further evidence that short-wavelength light at night is a potent suppressor of nocturnal melatonin. Importantly, we also illustrate that shifting the spectral output to longer wavelengths could mitigate these negative physiological impacts.  
  Address Department of Ecology, Environment and Evolution, La Trobe University, Melbourne, Australia  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2471-5638 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:29722167 Approved no  
  Call Number GFZ @ kyba @ Serial 1888  
Permanent link to this record
 

 
Author (up) Do, Q.-T.; Shapiro, J.N.; Elvidge, C.D.; Abdel-Jelil, M.; Ahn, D.P.; Baugh, K.; Hansen-Lewis, J.; Zhizhin, M.; Bazilian, M.D. url  doi
openurl 
  Title Terrorism, geopolitics, and oil security: Using remote sensing to estimate oil production of the Islamic State Type Journal Article
  Year 2018 Publication Energy Research & Social Science Abbreviated Journal Energy Research & Social Science  
  Volume 44 Issue Pages 411-418  
  Keywords Remote Sensing; Economics  
  Abstract As the world’s most traded commodity, oil production is typically well monitored and analyzed. It also has established links to geopolitics, international relations, and security. Despite this attention, the illicit production, refining, and trade of oil and derivative products occur all over the world and provide significant revenues outside of the oversight and regulation of governments. A prominent manifestation of this phenomenon is how terrorist and insurgent organizations—including the Islamic State group, also known as ISIL/ISIS or Daesh—use oil as a revenue source. Understanding the spatial and temporal variation in production can help determine the scale of operations, technical capacity, and revenue streams. This information, in turn, can inform both security and reconstruction strategies. To this end, we use satellite multi-spectral imaging and ground-truth pre-war output data to effectively construct a real-time census of oil production in areas controlled by the ISIL terrorist group. More broadly, remotely measuring the activity of extractive industries in conflict-affected areas without reliable administrative data can support a broad range of public policy and decisions and military operations.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2214-6296 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 1864  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: