|   | 
Details
   web
Records
Author Linden, B.; Huisman, J.; Rinkevich, B.
Title Circatrigintan instead of lunar periodicity of larval release in a brooding coral species Type Journal Article
Year 2018 Publication Scientific Reports Abbreviated Journal Sci Rep
Volume 8 Issue 1 Pages (down) 5668
Keywords Animals
Abstract Larval release by brooding corals is often assumed to display lunar periodicity. Here, we show that larval release of individual Stylophora pistillata colonies does not comply with the assumed tight entrainment by the lunar cycle, and can better be classified as a circatrigintan pattern. The colonies exhibited three distinct reproductive patterns, characterized by short intervals, long intervals and no periodicity between reproductive peaks, respectively. Cross correlation between the lunar cycle and larval release of the periodic colonies revealed an approximately 30-day periodicity with a variable lag of 5 to 10 days after full moon. The observed variability indicates that the lunar cycle does not provide a strict zeitgeber. Other factors such as water temperature and solar radiation did not correlate significantly with the larval release. The circatrigintan patterns displayed by S. pistillata supports the plasticity of corals and sheds new light on discussions on the fecundity of brooding coral species.
Address Israel Oceanographic and Limnological Research, National Institute of Oceanography, Tel-Shikmona, P.O. Box 8030, Haifa, 31080, Israel
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2045-2322 ISBN Medium
Area Expedition Conference
Notes PMID:29618779 Approved no
Call Number GFZ @ kyba @ Serial 1849
Permanent link to this record
 

 
Author Willmott, N.J.; Henneken, J.; Selleck, C.J.; Jones, T.M.
Title Artificial light at night alters life history in a nocturnal orb-web spider Type Journal Article
Year 2018 Publication PeerJ Abbreviated Journal
Volume 6 Issue Pages (down) e5599
Keywords Animals
Abstract The prevalence of artificial light at night (ALAN) is increasing rapidly around the world. The potential physiological costs of this night lighting are often evident in life history shifts. We investigated the effects of chronic night-time exposure to ecologically relevant levels of LED lighting on the life history traits of the nocturnal Australian garden orb-web spider (Eriophora biapicata). We reared spiders under a 12-h day and either a 12-h natural darkness (∼0 lux) or a 12-h dim light (∼20 lux) night and assessed juvenile development, growth and mortality, and adult reproductive success and survival. We found that exposure to ALAN accelerated juvenile development, resulting in spiders progressing through fewer moults, and maturing earlier and at a smaller size. There was a significant increase in daily juvenile mortality for spiders reared under 20 lux, but the earlier maturation resulted in a comparable number of 0 lux and 20 lux spiders reaching maturity. Exposure to ALAN also considerably reduced the number of eggs produced by females, and this was largely associated with ALAN-induced reductions in body size. Despite previous observations of increased fitness for some orb-web spiders in urban areas and near night lighting, it appears that exposure to artificial night lighting may lead to considerable developmental costs. Future research will need to consider the detrimental effects of ALAN combined with foraging benefits when studying nocturnal insectivores that forage around artificial lights.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2167-8359 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 2023
Permanent link to this record
 

 
Author Depner, C.M.; Melanson, E.L.; McHill, A.W.; Wright, K.P.J.
Title Mistimed food intake and sleep alters 24-hour time-of-day patterns of the human plasma proteome Type Journal Article
Year 2018 Publication Proceedings of the National Academy of Sciences of the United States of America Abbreviated Journal Proc Natl Acad Sci U S A
Volume 115 Issue 23 Pages (down) E5390-E5399
Keywords Human Health
Abstract Proteomics holds great promise for understanding human physiology, developing health biomarkers, and precision medicine. However, how much the plasma proteome varies with time of day and is regulated by the master circadian suprachiasmatic nucleus brain clock, assessed here by the melatonin rhythm, is largely unknown. Here, we assessed 24-h time-of-day patterns of human plasma proteins in six healthy men during daytime food intake and nighttime sleep in phase with the endogenous circadian clock (i.e., circadian alignment) versus daytime sleep and nighttime food intake out of phase with the endogenous circadian clock (i.e., circadian misalignment induced by simulated nightshift work). We identified 24-h time-of-day patterns in 573 of 1,129 proteins analyzed, with 30 proteins showing strong regulation by the circadian cycle. Relative to circadian alignment, the average abundance and/or 24-h time-of-day patterns of 127 proteins were altered during circadian misalignment. Altered proteins were associated with biological pathways involved in immune function, metabolism, and cancer. Of the 30 circadian-regulated proteins, the majority peaked between 1400 hours and 2100 hours, and these 30 proteins were associated with basic pathways involved in extracellular matrix organization, tyrosine kinase signaling, and signaling by receptor tyrosine-protein kinase erbB-2. Furthermore, circadian misalignment altered multiple proteins known to regulate glucose homeostasis and/or energy metabolism, with implications for altered metabolic physiology. Our findings demonstrate the circadian clock, the behavioral wake-sleep/food intake-fasting cycle, and interactions between these processes regulate 24-h time-of-day patterns of human plasma proteins and help identify mechanisms of circadian misalignment that may contribute to metabolic dysregulation.
Address Division of Endocrinology, Metabolism, and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0027-8424 ISBN Medium
Area Expedition Conference
Notes PMID:29784788 Approved no
Call Number GFZ @ kyba @ Serial 1916
Permanent link to this record
 

 
Author Landis, E.G.; Yang, V.; Brown, D.M.; Pardue, M.T.; Read, S.A.
Title Dim Light Exposure and Myopia in Children Type Journal Article
Year 2018 Publication Investigative Ophthalmology & Visual Science Abbreviated Journal Invest Ophthalmol Vis Sci
Volume 59 Issue 12 Pages (down) 4804-4811
Keywords Human Health
Abstract Purpose: Experimental myopia in animal models suggests that bright light can influence refractive error and prevent myopia. Additionally, animal research indicates activation of rod pathways and circadian rhythms may influence eye growth. In children, objective measures of personal light exposure, recorded by wearable light sensors, have been used to examine the effects of bright light exposure on myopia. The effect of time spent in a broad range of light intensities on childhood refractive development is not known. This study aims to evaluate dim light exposure in myopia. Methods: We reanalyzed previously published data to investigate differences in dim light exposure across myopic and nonmyopic children from the Role of Outdoor Activity in Myopia (ROAM) study in Queensland, Australia. The amount of time children spent in scotopic (<1-1 lux), mesopic (1-30 lux), indoor photopic (>30-1000 lux), and outdoor photopic (>1000 lux) light over both weekdays and weekends was measured with wearable light sensors. Results: We found significant differences in average daily light exposure between myopic and nonmyopic children. On weekends, myopic children received significantly less scotopic light (P = 0.024) and less outdoor photopic light than nonmyopic children (P < 0.001). In myopic children, more myopic refractive errors were correlated with increased time in mesopic light (R = -0.46, P = 0.002). Conclusions: These findings suggest that in addition to bright light exposure, rod pathways stimulated by dim light exposure could be important to human myopia development. Optimal strategies for preventing myopia with environmental light may include both dim and bright light exposure.
Address School of Optometry and Vision Science, Queensland University of Technology, Brisbane, Queensland, Australia
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0146-0404 ISBN Medium
Area Expedition Conference
Notes PMID:30347074; PMCID:PMC6181186 Approved no
Call Number NC @ ehyde3 @ Serial 2097
Permanent link to this record
 

 
Author Correa-Cano, M.E.; Goettsch, B.; Duffy, J.P.; Bennie, J.; Inger, R.; Gaston, K.J.
Title Erosion of natural darkness in the geographic ranges of cacti Type Journal Article
Year 2018 Publication Scientific Reports Abbreviated Journal Sci Rep
Volume 8 Issue 1 Pages (down) 4347
Keywords Plants; Remote Sensing
Abstract Naturally dark nighttime environments are being widely eroded by the introduction of artificial light at night (ALAN). The biological impacts vary with the intensity and spectrum of ALAN, but have been documented from molecules to ecosystems. How globally severe these impacts are likely to be depends in large part on the relationship between the spatio-temporal distribution of ALAN and that of the geographic ranges of species. Here, we determine this relationship for the Cactaceae family. Using maps of the geographic ranges of cacti and nighttime stable light composite images for the period 1992 to 2012, we found that a high percentage of cactus species were experiencing ALAN within their ranges in 1992, and that this percentage had increased by 2012. For almost all cactus species (89.7%) the percentage of their geographic range that was lit increased from 1992-1996 to 2008-2012, often markedly. There was a significant negative relationship between the species richness of an area, and that of threatened species, and the level of ALAN. Cacti could be particularly sensitive to this widespread and ongoing intrusion of ALAN into their geographic ranges, especially when considering the potential for additive and synergistic interactions with the impacts of other anthropogenic pressures.
Address Environment and Sustainability Institute, University of Exeter, Penryn, Cornwall, TR10 9FE, UK
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2045-2322 ISBN Medium
Area Expedition Conference
Notes PMID:29531261; PMCID:PMC5847551 Approved no
Call Number GFZ @ kyba @ Serial 1824
Permanent link to this record