|   | 
Details
   web
Records
Author Zeng, X.; Shao, X.; Qiu, S.; Ma, L.; Gao, C.; Li, C.
Title Stability Monitoring of the VIIRS Day/Night Band over Dome C with a Lunar Irradiance Model and BRDF Correction Type Journal Article
Year 2018 Publication Remote Sensing Abbreviated Journal Remote Sensing
Volume 10 Issue 2 Pages (down) 189
Keywords Instrumentation; Remote Sensing
Abstract The unique feature of the Visible Infrared Imager Radiometer Suite (VIIRS) day/night band (DNB) is its ability to take quantitative measurements of low-light scenes at night. In order to monitor the stability of the high gain stage (HGS) of the DNB, nighttime observations over the Dome C site under moonlight are analyzed in this study. The Miller and Turner 2009 (MT2009) lunar irradiance model has been used to simulate lunar illumination over Dome C. However, the MT2009 model does not differentiate the waxing and waning lunar phases. In this paper, the MT-SWC (SeaWiFS Corrected) lunar irradiance model differentiating the waxing and waning lunar phases is derived by correcting the MT2009 model using lunar observations made by the Sea-Viewing Wide Field-of-View Sensor (SeaWiFS). In addition, a top of atmosphere (TOA) bi-directional reflectance distribution function (BRDF) model during nighttime over Dome C is developed to remove the angular dependence from the nighttime TOA reflectance. The long-term stability monitoring of the DNB high-gain stage (HGS) reveals a lower reflectance factor in 2012 in comparison to the following years, which can be traced back to the change in relative spectral response (RSR) of National Oceanic & Atmospheric Administration’s (NOAA’s) Interface Data Processing Segment (IDPS) VIIRS DNB in April 2013. It also shows the radiometric stability of DNB data, with long-term stability of less than 1.58% over the periods from 2013 to 2016. This method can be used to monitor the radiometric stability of other low-light observing sensors using vicarious calibration sites under moonlight illumination.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2072-4292 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number LoNNe @ kyba @ Serial 1805
Permanent link to this record
 

 
Author Mammola, S.; Isaia, M.; Demonte, D.; Triolo, P.; Nervo, M.
Title Artificial lighting triggers the presence of urban spiders and their webs on historical buildings Type Journal Article
Year 2018 Publication Landscape and Urban Planning Abbreviated Journal Landscape and Urban Planning
Volume 180 Issue Pages (down) 187-194
Keywords Animals; Lighting
Abstract Different spider species living in the urban environment spin their webs on building facades. Due to air pollution, web aggregations entrap dirt particles over time, assuming a brownish-greyish colouration and thus determining an aesthetic impact on buildings and street furniture. In Europe, the most common species causing such an aesthetic nuisance is Brigittea civica (Lucas) (Dictynidae). In spite of the socio-economical relevance of the problem, the ecological factors driving the proliferation of this species in the urban environment are poorly described and the effectiveness of potential cleaning activities has never been discussed in scientific literature. Over one year, we studied the environmental drivers of B. civica webs in the arcades of the historical down-town district of Turin (NW-Italy). We selected a number of sampling plots on arcade ceilings and we estimated the density of B. civica webs by means of digital image analysis. In parallel, we collected information on a number of potential explanatory variables driving the arcade colonization, namely artificial lighting at night, substrate temperature, distance from the main artificial light sources and distance from the river. Regression analysis showed that the coverage of spider webs increased significantly at plots with higher light intensity, with a major effect related to the presence of historical lampposts with incandescent lamps rather than halogen lamps. We also detected a seasonal variation in the web coverage, with significant higher values in summer. Stemming from our results, we are able to suggest good practices for the containment of this phenomenon.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0169-2046 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 2002
Permanent link to this record
 

 
Author Grubisic, M.; Van Grunsven, R.H.A.; Kyba, C.C.M.; Manfrin, A.; Hölker, F.
Title Insect declines and agroecosystems: does light pollution matter? Type Journal Article
Year 2018 Publication Annals of Applied Biology Abbreviated Journal Ann. of Appl. Biol.
Volume 173 Issue 1 Pages (down) 180-189
Keywords Animals; Ecology; Review
Abstract Drastic declines in insect populations, ‘Ecological Armageddon’, have recently gained increased attention in the scientific community, and are commonly considered to be the consequence of large‐scale factors such as land‐use changes, use of pesticides, climate change and habitat fragmentation. Artificial light at night (ALAN), a pervasive global change that strongly impacts insects, remains, however, infrequently recognised as a potential contributor to the observed declines. Here, we provide a summary of recent evidence of impacts of ALAN on insects and discuss how these impacts can drive declines in insect populations in light‐polluted areas. ALAN can increase overall environmental pressure on insect populations, and this is particularly important in agroecosystems where insect communities provide important ecosystem services (such as natural pest control, pollination, conservation of soil structure and fertility and nutrient cycling), and are already under considerable environmental pressure. We discuss how changes in insect populations driven by ALAN and ALAN itself may hinder these services to influence crop production and biodiversity in agricultural landscapes. Understanding the contribution of ALAN and other factors to the decline of insects is an important step towards mitigation and the recovery of the insect fauna in our landscapes. In future studies, the role of increased nocturnal illumination also needs to be examined as a possible causal factor of insect declines in the ongoing ‘Ecological Armageddon’, along with the more commonly examined factors. Given the large scale of agricultural land use and the potential of ALAN to indirectly and directly impact crop production and biodiversity, a better understanding of effects of ALAN in agroecosystems is urgently needed.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 1939
Permanent link to this record
 

 
Author Wilson, P.; Thums, M.; Pattiaratchi, C.; Meekan, M.; Pendoley, K.; Fisher, R.; Whiting, S.
Title Artificial light disrupts the nearshore dispersal of neonate flatback turtles Natator depressus Type Journal Article
Year 2018 Publication Marine Ecology Progress Series Abbreviated Journal Mar. Ecol. Prog. Ser.
Volume 600 Issue Pages (down) 179-192
Keywords Animals
Abstract After emerging from nests, neonate sea turtles entering the water are thought to orientate away from shore using wave cues to guide them out to sea. Artificial light may interfere with this process, but the relative importance of natural and anthropogenic cues to the dispersal of hatchlings is unknown. Here, we used acoustic telemetry to track the movement of flatback turtle (Natator depressus) hatchlings dispersing through nearshore waters. Turtles dispersed in the presence and absence of artificial light through a receiver array where a range of oceanographic variables were measured. Turtle tracks were analysed using a full subsets Generalised Additive Mixed Model approach to identify the most important cues influencing the bearing, variance in bearing (a measure of the ability to orientate directly), rate of travel and time spent in the array. Artificial light reduced their swim speed by up to 30%, increased the amount of time spent in nearshore waters (by 50–150%) and increased the variance in bearing (100–180% more variable), regardless of oceanographic conditions. Under ambient conditions, ocean currents affected the bearing of hatchlings as they left the shore, but when light was present, this effect was diminished, showing turtles actively swam against currents in their attempts to move towards light. After accounting for the effects of currents on hatchlings dispersing under ambient conditions, turtles swam offshore by moving perpendicular to the coastline and did not appear to orient into incident wave direction. Overall, light disrupted the dispersal of hatchlings causing them to linger, become disoriented in the near shore and expend energy swimming against ocean currents.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0171-8630 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 1967
Permanent link to this record
 

 
Author Linares, H.; Masana, E.; Ribas, S.J.; Garcia - Gil, M.; Figueras, F.; Aubé, M.
Title Modelling the night sky brightness and light pollution sources of Montsec protected area Type Journal Article
Year 2018 Publication Journal of Quantitative Spectroscopy and Radiative Transfer Abbreviated Journal Journal of Quantitative Spectroscopy and Radiative Transfer
Volume 217 Issue Pages (down) 178-188
Keywords skyglow
Abstract We proceeded to the modelling of the night sky brightness of Montsec area (north-east of Spain), an astronomical protected area certified as a Starlight Reserve. We have used the hyperspectral version of ILLUMINA, an artificial sky brightness model. Ground based measurements for Montsec and other areas of Catalonia 0015 ; 0016, including both photometric and spectroscopic data, has been used to fit and evaluate the input parameters of the model. In this first modelling attempt, Lleida, the biggest city in the area, has been considered as the unique source of light pollution. In 2014 there was an update of the lighting infrastructure in Lleida. A detailed comparison of the sky brightness before and after the change is shown in order to measure the effects that different kind of lamps can produce. This information could be used to plan for future updates and improvements of the lighting systems in the area.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-4073 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 1923
Permanent link to this record