toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Jones, B.A. url  doi
openurl 
  Title Spillover health effects of energy efficiency investments: Quasi-experimental evidence from the Los Angeles LED streetlight program Type Journal Article
  Year 2018 Publication Journal of Environmental Economics and Management Abbreviated Journal Journal of Environmental Economics and Management  
  Volume 88 Issue Pages (down) 283-299  
  Keywords Human Health; LED; public health; outdoor lighting; Los Angeles; economics; energy efficiency; breast cancer; fossil fuel carbon emissions  
  Abstract Payback estimates of energy efficiency investments often ignore public health externalities. This is problematic in cases where spillover health effects are substantial, such as when the application of new technology alters environmental exposures. When health externalities are included in return on investment calculations, energy efficiency programs may look more or less attractive than suggested by conventional “energy savings only” estimates. This analysis exploits the quasi-experiment provided by the 2009 Los Angeles (LA) LED streetlight efficiency program to investigate the returns on investments inclusive of an originally estimated health externality. Using the synthetic control method, we find that the LED streetlight program is associated with a lagged increase in breast cancer mortality of 0.479 per 100,000. Inclusive of the effects of LEDs on breast cancer and avoided carbon emissions, the LA LED program provides a −146.2% 10-year return compared to +118.2% when health outcomes and carbon emissions are ignored.  
  Address Department of Economics, University of New Mexico, 1 UNM Drive, MSC 05 3060, Albuquerque, NM, 87131, USA; bajones(at)unm.edu  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language English Summary Language English Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0095-0696 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number IDA @ john @ Serial 1976  
Permanent link to this record
 

 
Author Hänel, A.; Posch, T.; Ribas, S.J.; Aubé, M.; Duriscoe, D.; Jechow, A.; Kolláth, Z.; Lolkema, D.E.; Moore, C.; Schmidt, N.; Spoelstra, H.; Wuchterl, G.; Kyba, C.C.M. url  doi
openurl 
  Title Measuring night sky brightness: methods and challenges Type Journal Article
  Year 2018 Publication Journal of Quantitative Spectroscopy and Radiative Transfer Abbreviated Journal Journal of Quantitative Spectroscopy and Radiative Transfer  
  Volume 205 Issue Pages (down) 278-290  
  Keywords skyglow  
  Abstract Measuring the brightness of the night sky has become an increasingly important topic in recent years, as artificial lights and their scattering by the Earthâ??s atmosphere continue spreading around the globe. Several instruments and techniques have been developed for this task. We give an overview of these, and discuss their strengths and limitations. The different quantities that can and should be derived when measuring the night sky brightness are discussed, as well as the procedures that have been and still need to be defined in this context. We conclude that in many situations, calibrated consumer digital cameras with fisheye lenses provide the best relation between ease-of-use and wealth of obtainable information on the night sky. While they do not obtain full spectral information, they are able to sample the complete sky in a period of minutes, with colour information in three bands. This is important, as given the current global changes in lamp spectra, changes in sky radiance observed only with single band devices may lead to incorrect conclusions regarding long term changes in sky brightness. The acquisition of all-sky information is desirable, as zenith-only information does not provide an adequate characterization of a site. Nevertheless, zenith-only single-band one-channel devices such as the â??Sky Quality Meterâ? continue to be a viable option for long-term studies of night sky brightness and for studies conducted from a moving platform. Accurate interpretation of such data requires some understanding of the colour composition of the sky light. We recommend supplementing long-term time series derived with such devices with periodic all-sky sampling by a calibrated camera system and calibrated luxmeters or luminance meters.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-4073 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number LoNNe @ kyba @; GFZ @ kyba @ Serial 1731  
Permanent link to this record
 

 
Author Li, K.; Chen, Y. url  doi
openurl 
  Title A Genetic Algorithm-Based Urban Cluster Automatic Threshold Method by Combining VIIRS DNB, NDVI, and NDBI to Monitor Urbanization Type Journal Article
  Year 2018 Publication Remote Sensing Abbreviated Journal Remote Sensing  
  Volume 10 Issue 2 Pages (down) 277  
  Keywords Remote Sensing  
  Abstract Accurate and timely information related to quantitative descriptions and spatial distributions of urban areas is crucial to understand urbanization dynamics and is also helpful to address environmental issues associated with rapid urban land-cover changes. Thresholding is acknowledged as the most popular and practical way to extract urban information from nighttime lights. However, the difficulty of determining optimal threshold remains challenging to applications of this method. In order to address the problem of selecting thresholds, a Genetic Algorithm-based urban cluster automatic threshold (GA-UCAT) method by combining Visible-Infrared Imager-Radiometer Suite Day/Night band (VIIRS DNB), Normalized Difference Vegetation Index (NDVI), and Normalized Difference Built-up Index (NDBI) is proposed to distinguish urban areas from dark rural background in NTL images. The key point of this proposed method is to design an appropriate fitness function of GA by means of integrating between-class variance and inter-class variance with all these three data sources to determine optimal thresholds. In accuracy assessments by comparing with ground truth—Landsat 8 OLI images, this new method has been validated and results with OA (Overall Accuracy) ranging from 0.854 to 0.913 and Kappa ranging from 0.699 to 0.722 show that the GA-UCAT approach is capable of describing spatial distributions and giving detailed information of urban extents. Additionally, there is discussion on different classifications of rural residential spots in Landsat remote sensing images and nighttime light (NTL) and evaluations of spatial-temporal development patterns of five selected Chinese urban clusters from 2012 to 2017 on utilizing this proposed method. The new method shows great potential to map global urban information in a simple and accurate way and to help address urban environmental issues.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2072-4292 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 2340  
Permanent link to this record
 

 
Author Zielinska-Dabkowska, K.M. url  doi
openurl 
  Title Make lighting healthier Type Journal Article
  Year 2018 Publication Nature Abbreviated Journal Nature  
  Volume 553 Issue 7688 Pages (down) 274-276  
  Keywords Commentary; Lighting; Human Health  
  Abstract Artificial illumination can stop us sleeping and make us ill. We need fresh strategies and technologies, argues Karolina M. Zielinska-Dabkowska.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0028-0836 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 2932  
Permanent link to this record
 

 
Author Wang, L.; Wang, S.; Zhou, Y.; Liu, W.; Hou, Y.; Zhu, J.; Wang, F. url  doi
openurl 
  Title Mapping population density in China between 1990 and 2010 using remote sensing Type Journal Article
  Year 2018 Publication Remote Sensing of Environment Abbreviated Journal Remote Sensing of Environment  
  Volume 210 Issue Pages (down) 269-281  
  Keywords Remote Sensing  
  Abstract Knowledge of the spatial distribution of populations at finer spatial scales is of significant value and fundamental to many applications such as environmental change, urbanization, regional planning, public health, and disaster management. However, detailed assessment of the population distribution data of countries that have large populations (such as China) and significant variation in distribution requires improved data processing methods and spatialization models. This paper described the construction of a novel population spatialization method by combining land use/cover data and night-light data. Based on the analysis of data characteristics, the method used partial correlation analysis and geographically weighted regression to improve the distribution accuracy and reduce regional errors. China's census data for the years 1990, 2000, and 2010 were assessed. The results showed that the method was better at population spatialization than methods that use only night-light data or land use/cover data and global linear regression. Evaluation of overall accuracies revealed that the coefficient of correlation R-square was >0.90 and increased by >0.13 in the years 1990, 2000, and 2010. Moreover, the local R-square of over 90% of the samples (counties) was higher than the adjusted R-square of the general linear regression model. Furthermore, the gridded population density datasets obtained by this method can be used to analyse spatial-temporal patterns of population density and provide population distribution information with increased accuracy and precision compared to conventional models.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0034-4257 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 2480  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: