toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Kocifaj, M. url  doi
openurl 
  Title Towards a Comprehensive City Emission Function (CCEF) Type Journal Article
  Year 2018 Publication Journal of Quantitative Spectroscopy and Radiative Transfer Abbreviated Journal JQSRT  
  Volume 205 Issue Pages (down) 253-266  
  Keywords Lighting; Skyglow  
  Abstract The comprehensive city emission function (CCEF) is developed for a heterogeneous light-emitting or blocking urban environments, embracing any combination of input parameters that characterize linear dimensions in the system (size and distances between buildings or luminaires), properties of light-emitting elements (such as luminous building façades and street lighting), ground reflectance and total uplight-fraction, all of these defined for an arbitrarily sized 2D area. The analytical formula obtained is not restricted to a single model class as it can capture any specific light-emission feature for wide range of cities. The CCEF method is numerically fast in contrast to what can be expected of other probabilistic approaches that rely on repeated random sampling. Hence the present solution has great potential in light-pollution modeling and can be included in larger numerical models. Our theoretical findings promise great progress in light-pollution modeling as this is the first time an analytical solution to city emission function (CEF) has been developed that depends on statistical mean size and height of city buildings, inter-building separation, prevailing heights of light fixtures, lighting density, and other factors such as e.g. luminaire light output and light distribution, including the amount of uplight, and representative city size. The model is validated for sensitivity and specificity pertinent to combinations of input parameters in order to test its behavior under various conditions, including those that can occur in complex urban environments. It is demonstrated that the solution model succeeds in reproducing a light emission peak at some elevated zenith angles and is consistent with reduced rather than enhanced emission in directions nearly parallel to the ground.  
  Address  
  Corporate Author Thesis  
  Publisher ScienceDirect Place of Publication Editor  
  Language English Summary Language English Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number LoNNe @ kyba @ Serial 1757  
Permanent link to this record
 

 
Author Fehrer, D.; Krarti, M. url  doi
openurl 
  Title Spatial distribution of building energy use in the United States through satellite imagery of the earth at night Type Journal Article
  Year 2018 Publication Building and Environment Abbreviated Journal Building and Environment  
  Volume 142 Issue Pages (down) 252-264  
  Keywords remote sensing  
  Abstract Despite the importance of geospatial analysis of energy use in buildings, the data available for such exercises is limited. A potential solution is to use geospatial information, such as that obtained from satellites, to disaggregate building energy use data to a more useful scale. Many researchers have used satellite imagery to estimate the extent of human activities, including building energy use and population distribution. Much of the reported work has been carried out in rapidly developing countries such as India and China where urban development is dynamic and not always easy to measure. In countries with less rapid urbanization, such as the United States, there is still value in using satellite imagery to estimate building energy use for the purposes of identifying energy efficiency opportunities and planning electricity transmission. This study evaluates nighttime light imagery obtained from the VIIRS instrument aboard the SUOMI NPP satellite as a predictor of building energy use intensity within states, counties, and cities in the United States. It is found that nighttime lights can explain upwards of 90% of the variability in energy consumption in the United States, depending on conditions and geospatial scale. The results of this research are used to generate electricity and fuel consumption maps of the United States with a resolution of less than 200 square meters. The methodologies undertaken in this study can be replicated globally to create more opportunities for geospatial energy analysis without the hurdles often associated with disaggregated building energy use data collection.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0360-1323 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 1938  
Permanent link to this record
 

 
Author Borck, P.C.; Batista, T.M.; Vettorazzi, J.F.; Soares, G.M.; Lubaczeuski, C.; Guan, D.; Boschero, A.C.; Vieira, E.; Lazar, M.A.; Carneiro, E.M. url  doi
openurl 
  Title Nighttime light exposure enhances Rev-erbalpha-targeting microRNAs and contributes to hepatic steatosis Type Journal Article
  Year 2018 Publication Metabolism: Clinical and Experimental Abbreviated Journal Metabolism  
  Volume 85 Issue Pages (down) 250-258  
  Keywords Animals  
  Abstract OBJECTIVE: The exposure to artificial light at night (ALAN) disrupts the biological rhythms and has been associated with the development of metabolic syndrome. MicroRNAs (miRNAs) display a critical role in fine-tuning the circadian system and energy metabolism. In this study, we aimed to assess whether altered miRNAs expression in the liver underlies metabolic disorders caused by disrupted biological rhythms. RESULTS: We found that C3H/HePas mice exposed to ALAN developed obesity, and hepatic steatosis, which was paralleled by decreased expression of Rev-erbalpha and up-regulation of its lipogenic targets ACL and FAS in liver. Furthermore, the expression of Rev-erbalpha-targeting miRNAs, miR-140-5p, 185-5p, 326-5p and 328-5p were increased in this group. Consistently, overexpression of these miRNAs in primary hepatocytes reduced Rev-erbalpha expression at the mRNA and protein levels. Importantly, overexpression of Rev-erbalpha-targeting miRNAs increased mRNA levels of Acly and Fasn. CONCLUSION: Thus, altered miRNA profile is an important mechanism underlying the disruption of the peripheral clock caused by exposure to ALAN, which could lead to hepatic steatosis.  
  Address Obesity and Comorbidities Research Center, Institute of Biology, University of Campinas/UNICAMP, Campinas, SP, Brazil; Department of Structural and Functional Biology, Institute of Biology, University of Campinas/UNICAMP, Campinas, SP, Brazil  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0026-0495 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:29751019 Approved no  
  Call Number GFZ @ kyba @ Serial 1891  
Permanent link to this record
 

 
Author Matveyenko, A.V. url  doi
openurl 
  Title Consideration for Circadian Physiology in Rodent Research Type Journal Article
  Year 2018 Publication Physiology (Bethesda, Md.) Abbreviated Journal Physiology (Bethesda)  
  Volume 33 Issue 4 Pages (down) 250-251  
  Keywords Animals; Commentary  
  Abstract  
  Address Mayo Clinic , Rochester, Minnesota  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1548-9221 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:29873599 Approved no  
  Call Number GFZ @ kyba @ Serial 1935  
Permanent link to this record
 

 
Author Arendt, J.; Middleton, B. url  doi
openurl 
  Title Human seasonal and circadian studies in Antarctica (Halley, 75 degrees S) Type Journal Article
  Year 2018 Publication General and Comparative Endocrinology Abbreviated Journal Gen Comp Endocrinol  
  Volume 258 Issue Pages (down) 250-258  
  Keywords Human Activities; Acclimatization/*physiology; Actigraphy; Adult; Antarctic Regions; Behavior/*physiology; Circadian Rhythm/*physiology; Darkness; Female; Heart Rate/physiology; Humans; Libido; Light; Male; Melatonin/blood; Photoperiod; *Seasons; Sleep/physiology; Young Adult; *Antarctica; *Circadian; *Light; *Melatonin; *Seasonal  
  Abstract Living for extended periods in Antarctica exposes base personnel to extremes of daylength (photoperiod) and temperature. At the British Antarctic Survey base of Halley, 75 degrees S, the sun does not rise for 110 d in the winter and does not set for 100 d in summer. Photoperiod is the major time cue governing the timing of seasonal events such as reproduction in many species. The neuroendocrine signal providing photoperiodic information to body physiology is the duration of melatonin secretion which reflects the length of the night: longer in the short days of winter and shorter in summer. Light of sufficient intensity and spectral composition serves to suppress production of melatonin and to set the circadian timing and the duration of the rhythm. In humans early observations suggested that bright (>2000 lux) white light was needed to suppress melatonin completely. Shortly thereafter winter depression (Seasonal Affective Disorder or SAD) was described, and its successful treatment by an artificial summer photoperiod of bright white light, sufficient to shorten melatonin production. At Halley dim artificial light intensity during winter was measured, until 2003, at a maximum of approximately 500 lux in winter. Thus a strong seasonal and circadian time cue was absent. It seemed likely that winter depression would be common in the extended period of winter darkness and could be treated with an artificial summer photoperiod. These observations, and predictions, inspired a long series of studies regarding human seasonal and circadian status, and the effects of light treatment, in a small overwintering, isolated community, living in the same conditions for many months at Halley. We found little evidence of SAD, or change in duration of melatonin production with season. However the timing of the melatonin rhythm itself, and/or that of its metabolite 6-sulphatoxymelatonin (aMT6s), was used as a primary marker of seasonal, circadian and treatment changes. A substantial phase delay of melatonin in winter was advanced to summer phase by a two pulse 'skeleton' bright white light treatment. Subsequently a single morning pulse of bright white light was effective with regard to circadian phase and improved daytime performance. The circadian delay evidenced by melatonin was accompanied by delayed sleep (logs and actigraphy): poor sleep is a common complaint in Polar regions. Appropriate extra artificial light, both standard white, and blue enriched, present throughout the day, effectively countered delay in sleep timing and the aMT6s rhythm. The most important factor appeared to be the maximum light experienced. Another manifestation of the winter was a decline in self-rated libido (men only on base at this time). Women on the base showed lower aspects of physical and mental health compared to men. Free-running rhythms were seen in some subjects following night shift, but were rarely found at other times, probably because this base has strongly scheduled activity and leisure time. Complete circadian adaptation during a week of night shift, also seen in a similar situation on North Sea oil rigs, led to problems readapting back to day shift in winter, compared to summer. Here again timed light treatment was used to address the problem. Sleep, alertness and waking performance are critically dependent on optimum circadian phase. Circadian desynchrony is associated with increased risk of major disease in shift workers. These studies provide some groundwork for countering/avoiding circadian desynchrony in rather extreme conditions.  
  Address Biochemistry and Physiology, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, UK. Electronic address: b.middleton@surrey.ac.uk  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0016-6480 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:28526480 Approved no  
  Call Number IDA @ john @ Serial 2248  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: