|   | 
Details
   web
Records
Author Johns, L.E.; Jones, M.E.; Schoemaker, M.J.; McFadden, E.; Ashworth, A.; Swerdlow, A.J.
Title Domestic light at night and breast cancer risk: a prospective analysis of 105 000 UK women in the Generations Study Type Journal Article
Year 2018 Publication British Journal of Cancer Abbreviated Journal Br J Cancer
Volume 118 Issue Pages (down) 600-606
Keywords Human Health
Abstract BACKGROUND: Circadian disruption caused by exposure to light at night (LAN) has been proposed as a risk factor for breast cancer and a reason for secular increases in incidence. Studies to date have largely been ecological or case-control in design and findings have been mixed. METHODS: We investigated the relationship between LAN and breast cancer risk in the UK Generations Study. Bedroom light levels and sleeping patterns at age 20 and at study recruitment were obtained by questionnaire. Analyses were conducted on 105 866 participants with no prior history of breast cancer. During an average of 6.1 years of follow-up, 1775 cases of breast cancer were diagnosed. Cox proportional hazard models were used to calculate hazard ratios (HRs), adjusting for potential confounding factors. RESULTS: There was no association between LAN level and breast cancer risk overall (highest compared with lowest LAN level at recruitment: HR=1.01, 95% confidence interval (CI): 0.88-1.15), or for invasive (HR=0.98, 95% CI: 0.85-1.13) or in situ (HR=0.96, 95% CI: 0.83-1.11) breast cancer, or oestrogen-receptor (ER) positive (HR=0.98, 95% CI: 0.84-1.14); or negative (HR=1.16, 95% CI: 0.82-1.65) tumours separately. The findings did not differ by menopausal status. Adjusting for sleep duration, sleeping at unusual times (non-peak sleep) and history of night work did not affect the results. Night waking with exposure to light, occurring around age 20, was associated with a reduced risk of premenopausal breast cancer (HR for breast cancer overall=0.74, 95% CI: 0.55-0.99; HR for ER-positive breast cancer=0.69, 95% CI: 0.49-0.97). CONCLUSIONS: In this prospective cohort analysis of LAN, there was no evidence that LAN exposure increased the risk of subsequent breast cancer, although the suggestion of a lower breast cancer risk in pre-menopausal women with a history of night waking in their twenties may warrant further investigation.British Journal of Cancer advance online publication, 23 January 2018; doi:10.1038/bjc.2017.359 www.bjcancer.com.
Address Division of Breast Cancer Research, The Institute of Cancer Research, London SW3 6JB, UK
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0007-0920 ISBN Medium
Area Expedition Conference
Notes PMID:29360812 Approved no
Call Number LoNNe @ kyba @ Serial 1803
Permanent link to this record
 

 
Author Eccard, J.A.; Scheffler, I.; Franke, S.; Hoffmann, J.; Leather, S.; Stewart, A.
Title Off-grid: solar powered LED illumination impacts epigeal arthropods Type Journal Article
Year 2018 Publication Insect Conservation and Diversity Abbreviated Journal Insect Conserv Divers
Volume 11 Issue 6 Pages (down) 600-607
Keywords Animals; Ecology
Abstract Advances in LED technology combined with solar, storable energy bring light to places remote from electricity grids. Worldwide more than 1.3 billion of people are living off‐grid, often in developing regions of high insect biodiversity. In developed countries, dark refuges for wildlife are threatened by ornamental garden lights. Solar powered LEDs (SPLEDs) are cheaply available, dim, and often used to illuminate foot paths, but little is known on their effects on ground living (epigeal) arthropods.

We used off‐the‐shelf garden lamps with a single ‘white’ LED (colour temperature 7250 K) to experimentally investigate effects on attraction and nocturnal activity of ground beetles (Carabidae).

We found two disparate and species‐specific effects of SPLEDs. (i) Some nocturnal, phototactic species were not reducing activity under illumination and were strongly attracted to lamps (>20‐fold increase in captures compared to dark controls). Such species aggregate in lit areas and SPLEDs may become ecological traps, while the species is drawn from nearby, unlit assemblages. (ii) Other nocturnal species were reducing mobility and activity under illumination without being attracted to light, which may cause fitness reduction in lit areas.

Both reactions offer mechanistic explanations on how outdoor illumination can change population densities of specific predatory arthropods, which may have cascading effects on epigeal arthropod assemblages. The technology may thus increase the area of artificial light at night (ALAN) impacting insect biodiversity.

Measures are needed to mitigate effects, such as adjustment of light colour temperature and automated switch‐offs.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1752458X ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number NC @ ehyde3 @ Serial 2085
Permanent link to this record
 

 
Author Underhill, V.A.; Höbel, G.
Title Mate choice behavior of female Eastern Gray Treefrogs (Hyla versicolor) is robust to anthropogenic light pollution Type Journal Article
Year 2018 Publication Ethology Abbreviated Journal Ethology
Volume 124 Issue 8 Pages (down) 537-548
Keywords Animals
Abstract Human activities are drastically changing the amount of artificial light entering natural habitats. Because light pollution alters the sensory environment, it may interfere with behaviors ranging from prey detection and vigilance to mate choice. Here, we test the hypothesis that anthropogenic light pollution affects the mate choice behavior of female Eastern Gray Treefrogs (Hyla versicolor). We tested this hypothesis under two experimental light treatments that simulate the light pollution created by streetlights (expansion of lit areas and increased light intensity), and the light pollution created by headlights of passing vehicles (rapid fluctuations between bright and dark conditions). The hypothesis predicts that females tested under conditions simulating light pollution will show behavioral changes geared toward mitigating detection by predators, such as relaxed preferences, decreased choosiness for the normally preferred call, and differences in approach behavior (either more directional, faster, or stealthier movements, or no approach at all). Contrary to our prediction, we found that light pollution did not affect mate choice behavior in Gray Treefrogs, and should therefore neither interfere with population persistence nor affect the sexual selection regimes on male call traits of this species. However, we caution that this result does not imply that anthropogenic light pollution is of no concern for amphibian conservation, because behavioral responses to variation in nocturnal light levels (both in the natural as well as anthropogenically enhanced range) seem to be highly species‐specific in anurans. We encourage additional studies to help gage the vulnerability of anurans to anthropogenic light pollution.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0179-1613 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number NC @ ehyde3 @ Serial 2090
Permanent link to this record
 

 
Author Nagare, R.; Plitnick, B.; Figueiro, M.
Title Effect of exposure duration and light spectra on nighttime melatonin suppression in adolescents and adults Type Journal Article
Year 2018 Publication Lighting Research & Technology Abbreviated Journal Lighting Research & Technology
Volume 51 Issue 4 Pages (down) 530-543
Keywords Human Health
Abstract This study investigated how light exposure duration affects melatonin suppression, a well-established marker of circadian phase, and whether adolescents (13–18 years) are more sensitive to short-wavelength (blue) light than adults (32–51 years). Twenty-four participants (12 adolescents, 12 adults) were exposed to three lighting conditions during successive 4-h study nights that were separated by at least one week. In addition to a dim light (<5 lux) control, participants were exposed to two light spectra (warm (2700 K) and cool (5600 K)) delivering a circadian stimulus of 0.25 at eye level. Repeated measures analysis of variance revealed a significant main effect of exposure duration, indicating that a longer duration exposure suppressed melatonin to a greater degree. The analysis further revealed a significant main effect of spectrum and a significant interaction between spectrum and participant age. For the adolescents, but not the adults, melatonin suppression was significantly greater after exposure to the 5600 K intervention (43%) compared to the 2700 K intervention (29%), suggesting an increased sensitivity to short-wavelength radiation. These results will be used to extend the model of human circadian phototransduction to incorporate factors such as exposure duration and participant age to better predict effective circadian stimulus.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1477-1535 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 1821
Permanent link to this record
 

 
Author Kim, Y.J.; Kim, H.M.; Kim, H.M.; Jeong, B.R.; Lee, H.-J.; Kim, H.-J.; Hwang, S.J.
Title Ice plant growth and phytochemical concentrations are affected by light quality and intensity of monochromatic light-emitting diodes Type Journal Article
Year 2018 Publication Horticulture, Environment, and Biotechnology Abbreviated Journal Hortic. Environ. Biotechnol.
Volume 59 Issue 4 Pages (down) 529-536
Keywords Plants
Abstract The ice plant (Mesembryanthemum crystallinum L.), widely known to be an effective cure for diabetes mellitus, is also a functional crop. This study was conducted to examine the effects of light quality and intensity of monochromatic light-emitting diodes (LEDs) on ice plant growth and phytochemical concentrations in a closed-type plant production system. Ice plant seedlings were transplanted into a deep floating technique system with a recycling nutrient solution (EC 4.0 dS m−1, pH 6.5). Fluorescent lamps, as well as monochromatic red (660 nm) and blue (450 nm) LEDs, were used at 120 ± 5 or 150 ± 5 µmol m−2 s−1 PPFD with a photoperiod of 14 h/10 h (light/dark) for 4 weeks. Ice plants showed higher growth under the high light intensity treatment, especially under the red LEDs. Furthermore, the SPAD value and photosynthetic rate were higher under the red LEDs with 150 µmol m−2 s−1 PPFD. The ice plant phytochemical composition, such as antioxidant activity and myo-inositol and pinitol concentrations, were highest under the blue LEDs with 150 µmol m−2 s−1 PPFD. Total phenolic concentration was highest under the blue LEDs with 120 µmol m−2 s−1 PPFD. Despite a slightly different dependence on light intensity, phytochemical concentrations responded positively to the blue LED treatments, as compared to other treatments. In conclusion, this study suggests that red LEDs enhance ice plant biomass, while blue LEDs induce phytochemical
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2211-3452 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 1983
Permanent link to this record