|   | 
Details
   web
Records
Author Solano-Lamphar, H.A.; Kocifaj, M.
Title Numerical research on the effects the skyglow could have in phytochromes and RQE photoreceptors of plants Type Journal Article
Year 2018 Publication Journal of Environmental Management Abbreviated Journal J Environ Manage
Volume 209 Issue Pages (down) 484-494
Keywords Plants; Skyglow
Abstract The increase of artificial light at night has a terrible impact on organisms with nightlife patterns such as a migration, nutrition, reproduction and collective interaction. Plants are not free from this issue as they have life cycle events occurring not only yearly but also daily. Such events relate to daytime variations with seasons in which the flowers of deciduous trees bloom and the leaves of certain trees fall off and change color. A response of plants to artificial light at night still remains poorly quantified; but recent scientific research suggest that skyglow can disturb plants processes. For instance, low levels of light affect deciduous plants, which shed their leaves as days grow short in the fall. In this paper we model skyglow considering the features of artificial light that can affect natural processes of plants during the night. A case-study was conducted to mimic skyglow effects in real location for which experimental data exist. In our numerical simulations we found that some lighting systems can have an effect on plant photoreceptors and affect the phenology of plants. Specifically, the lamps that emit the electromagnetic energy in a wide spectral range can have greater effect on the photosensitivity of the plants. We believe the results obtained here will motivate botanists to make a targeted experiment to verify or challenge our findings. If the night light can change plant behavior under some conditions, it can have significant implications in botany, biology, or even agriculture.
Address ICA, Slovak Academy of Sciences, Dubravska Road 9, 845 03, Bratislava, Slovak Republic; Faculty of Mathematics, Physics, and Informatics, Comenius University, Mlynska Dolina, 842 48, Bratislava, Slovakia. Electronic address: kocifaj@savba.sk
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0301-4797 ISBN Medium
Area Expedition Conference
Notes PMID:29316469 Approved no
Call Number GFZ @ kyba @ Serial 1854
Permanent link to this record
 

 
Author Hopkins, G.R.; Gaston, K.J.; Visser, M.E.; Elgar, M.A.; Jones, T.M.
Title Artificial light at night as a driver of evolution across urban-rural landscapes Type Journal Article
Year 2018 Publication Frontiers in Ecology and the Environment Abbreviated Journal Front Ecol Environ
Volume 16 Issue 8 Pages (down) 472-479
Keywords Ecology, Commentary
Abstract Light is fundamental to biological systems, affecting the daily rhythms of bacteria, plants, and animals. Artificial light at night (ALAN), a ubiquitous feature of urbanization, interferes with these rhythms and has the potential to exert strong selection pressures on organisms living in urban environments. ALAN also fragments landscapes, altering the movement of animals into and out of artificially lit habitats. Although research has documented phenotypic and genetic differentiation between urban and rural organisms, ALAN has rarely been considered as a driver of evolution. We argue that the fundamental importance of light to biological systems, and the capacity for ALAN to influence multiple processes contributing to evolution, makes this an important driver of evolutionary change, one with the potential to explain broad patterns of population differentiation across urban–rural landscapes. Integrating ALAN's evolutionary potential into urban ecology is a targeted and powerful approach to understanding the capacity for life to adapt to an increasingly urbanized world.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1540-9295 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number NC @ ehyde3 @ Serial 2073
Permanent link to this record
 

 
Author Ma, T.; Yin, Z.; Zhou, A.
Title Delineating Spatial Patterns in Human Settlements Using VIIRS Nighttime Light Data: A Watershed-Based Partition Approach Type Journal Article
Year 2018 Publication Remote Sensing Abbreviated Journal Remote Sensing
Volume 10 Issue 3 Pages (down) 465
Keywords Remote Sensing
Abstract As an informative proxy measure for a range of urbanization and socioeconomic variables, satellite-derived nighttime light data have been widely used to investigate diverse anthropogenic activities in human settlements over time and space from the regional to the national scale. With a higher spatial resolution and fewer over-glow and saturation effects, nighttime light data derived from the Visible Infrared Imaging Radiometer Suite (VIIRS) instrument with day/night band (DNB), which is on the Suomi National Polar-Orbiting Partnership satellite (Suomi-NPP), may further improve our understanding of spatiotemporal dynamics and socioeconomic activities, particularly at the local scale. Capturing and identifying spatial patterns in human settlements from VIIRS images, however, is still challenging due to the lack of spatially explicit texture characteristics, which are usually crucial for general image classification methods. In this study, we propose a watershed-based partition approach by combining a second order exponential decay model for the spatial delineation of human settlements with VIIRS-derived nighttime light images. Our method spatially partitions the human settlement into five different types of sub-regions: high, medium-high, medium, medium-low and low lighting areas with different degrees of human activity. This is primarily based on the local coverage of locally maximum radiance signals (watershed-based) and the rank and magnitude of the nocturnal radiance signal across the whole region, as well as remotely sensed building density data and social media-derived human activity information. The comparison results for the relationship between sub-regions with various density nighttime brightness levels and human activities, as well as the densities of different types of interest points (POIs), show that our method can distinctly identify various degrees of human activity based on artificial nighttime radiance and ancillary data. Furthermore, the analysis results across 99 cities in 10 urban agglomerations in China reveal inter-regional variations in partition thresholds and human settlement patterns related to the urban size and form. Our partition method and relative results can provide insight into the further application of VIIRS DNB nighttime light data in spatially delineated urbanization processes and socioeconomic activities in human settlements.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2072-4292 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 1820
Permanent link to this record
 

 
Author Alaasam, V.J.; Duncan, R.; Casagrande, S.; Davies, S.; Sidher, A.; Seymoure, B.; Shen, Y.; Zhang, Y.; Ouyang, J.Q.
Title Light at night disrupts nocturnal rest and elevates glucocorticoids at cool color temperatures Type Journal Article
Year 2018 Publication Journal of Experimental Zoology. Part A, Ecological and Integrative Physiology Abbreviated Journal J Exp Zool A Ecol Integr Physiol
Volume 329 Issue 8-9 Pages (down) 465-472
Keywords Animals
Abstract Nighttime light pollution is quickly becoming a pervasive, global concern. Since the invention and proliferation of light-emitting diodes (LED), it has become common for consumers to select from a range of color temperatures of light with varying spectra. Yet, the biological impacts of these different spectra on organisms remain unclear. We tested if nighttime illumination of LEDs, at two commercially available color temperatures (3000 and 5000 K) and at ecologically relevant illumination levels affected body condition, food intake, locomotor activity, and glucocorticoid levels in zebra finches (Taeniopygia guttata). We found that individuals exposed to 5000 K light had higher rates of nighttime activity (peaking after 1 week of treatment) compared to 3000 K light and controls (no nighttime light). Birds in the 5000 K treatment group also had increased corticosterone levels from pretreatment levels compared to 3000 K and control groups but no changes in body condition or food intake. Individuals that were active during the night did not consequently decrease daytime activity. This study adds to the growing evidence that the spectrum of artificial light at night is important, and we advocate the use of nighttime lighting with warmer color temperatures of 3000 K instead of 5000 K to decrease energetic costs for avian taxa.
Address Department of Biology, University of Nevada, Reno, Nevada
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2471-5638 ISBN Medium
Area Expedition Conference
Notes PMID:29766666 Approved no
Call Number GFZ @ kyba @ Serial 1909
Permanent link to this record
 

 
Author Rodríguez Martín, A.; Holmberg, R.; Dann, P.; Chiaradia, A.
Title Penguin colony attendance under artificial lights for ecotourism Type Journal Article
Year 2018 Publication Journal of Experimental Zoology. Part A, Ecological and Integrative Physiology Abbreviated Journal J Exp Zool A Ecol Integr Physiol
Volume 329 Issue 8-9 Pages (down) 457-464
Keywords Animals
Abstract Wildlife watching is an emerging ecotourism activity around the world. In Australia and New Zealand, night viewing of little penguins attracts hundreds of thousands of visitors per year. As penguins start coming ashore after sunset, artificial lighting is essential to allow visitors to view them in the dark. This alteration of the nightscape warrants investigation for any potential effects of artificial lighting on penguin behavior. We experimentally tested how penguins respond to different light wavelengths (colors) and intensities to examine effects on the colony attendance behavior at two sites on Phillip Island, Australia. At one site, nocturnal artificial illumination has been used for penguin viewing for decades, whereas at the other site, the only light is from the natural night sky. Light intensity did not affect colony attendance behaviors of penguins at the artificially lit site, probably due to penguin habituation to lights. At the not previously lit site, penguins preferred lit paths over dark paths to reach their nests. Thus, artificial light might enhance penguin vision at night and consequently it might reduce predation risk and energetic costs of locomotion through obstacle and path detection. Although penguins are faithful to their path, they can be drawn to artificial lights at small spatial scale, so light pollution could attract penguins to undesirable lit areas. When artificial lighting is required, we recommend keeping lighting as dim and time-restricted as possible to mitigate any negative effects on the behavior of penguins and their natural habitat.
Address Research Department, Phillip Island Nature Parks, Cowes, Victoria, Australia
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2471-5638 ISBN Medium
Area Expedition Conference
Notes PMID:29603671 Approved no
Call Number GFZ @ kyba @ Serial 1834
Permanent link to this record