|   | 
Details
   web
Records
Author Bará, S., Lima, R.C.
Title Photons without borders: quantifying light pollution transfer between territories Type Journal Article
Year 2018 Publication International Journal of Sustainable Lighting Abbreviated Journal
Volume 20 Issue 2 Pages 51-61
Keywords Skyglow
Abstract The light pollution levels experienced at any given site generally depend on a wide number of artificial light sources distributed throughout the surrounding territory. Since photons can travel long distances before being scattered by the atmosphere, any effective proposal for reducing local light pollution levels needs an accurate assessment of the relative weight of all intervening light sources, including those located tens or even hundreds of km away. In this paper we describe several ways of quantifying and visualizing these relative weights. Particular emphasis is made on the aggregate contribution of the municipalities, which are -in many regions of the world- the administrative bodies primarily responsible for the planning and maintenance of public outdoor lighting systems.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN (up) Medium
Area Expedition Conference
Notes Approved no
Call Number NC @ ehyde3 @ Serial 2066
Permanent link to this record
 

 
Author Jan Stenvers, D.; Scheer, F.A.J.L.; Schrauwen, P.; la Fleur, S.E.; Kalsbeek, A.
Title Circadian clocks and insulin resistance Type Journal Article
Year 2018 Publication Nature Reviews. Endocrinology Abbreviated Journal Nat Rev Endocrinol
Volume in press Issue Pages
Keywords Human Health; Review
Abstract Insulin resistance is a main determinant in the development of type 2 diabetes mellitus and a major cause of morbidity and mortality. The circadian timing system consists of a central brain clock in the hypothalamic suprachiasmatic nucleus and various peripheral tissue clocks. The circadian timing system is responsible for the coordination of many daily processes, including the daily rhythm in human glucose metabolism. The central clock regulates food intake, energy expenditure and whole-body insulin sensitivity, and these actions are further fine-tuned by local peripheral clocks. For instance, the peripheral clock in the gut regulates glucose absorption, peripheral clocks in muscle, adipose tissue and liver regulate local insulin sensitivity, and the peripheral clock in the pancreas regulates insulin secretion. Misalignment between different components of the circadian timing system and daily rhythms of sleep-wake behaviour or food intake as a result of genetic, environmental or behavioural factors might be an important contributor to the development of insulin resistance. Specifically, clock gene mutations, exposure to artificial light-dark cycles, disturbed sleep, shift work and social jet lag are factors that might contribute to circadian disruption. Here, we review the physiological links between circadian clocks, glucose metabolism and insulin sensitivity, and present current evidence for a relationship between circadian disruption and insulin resistance. We conclude by proposing several strategies that aim to use chronobiological knowledge to improve human metabolic health.
Address Netherlands Institute for Neuroscience (NIN), Royal Dutch Academy of Arts and Sciences (KNAW), Amsterdam, Netherlands. a.kalsbeek@nin.knaw.nl
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1759-5029 ISBN (up) Medium
Area Expedition Conference
Notes PMID:30531917 Approved no
Call Number GFZ @ kyba @ Serial 2133
Permanent link to this record
 

 
Author Griepentrog, J.E.; Labiner, H.E.; Gunn, S.R.; Rosengart, M.R.
Title Bright environmental light improves the sleepiness of nightshift ICU nurses Type Journal Article
Year 2018 Publication Critical Care (London, England) Abbreviated Journal Crit Care
Volume 22 Issue 1 Pages 295
Keywords Circadian; Light; Night shift; Nurse; Shift work sleep disorder
Abstract BACKGROUND: Shift work can disturb circadian homeostasis and result in fatigue, excessive sleepiness, and reduced quality of life. Light therapy has been shown to impart positive effects in night shift workers. We sought to determine whether or not prolonged exposure to bright light during a night shift reduces sleepiness and enhances psychomotor performance among ICU nurses.

METHODS: This is a single-center randomized, crossover clinical trial at a surgical trauma ICU. ICU nurses working a night shift were exposed to a 10-h period of high illuminance (1500-2000 lx) white light compared to standard ambient fluorescent lighting of the hospital. They then completed the Stanford Sleepiness Scale and the Psychomotor Vigilance Test. The primary and secondary endpoints were analyzed using the paired t test. A p value <0.05 was considered significant.

RESULTS: A total of 43 matched pairs completed both lighting exposures and were analyzed. When exposed to high illuminance lighting subjects experienced reduced sleepiness scores on the Stanford Sleepiness Scale than when exposed to standard hospital lighting: mean (sem) 2.6 (0.2) vs. 3.0 (0.2), p = 0.03. However, they committed more psychomotor errors: 2.3 (0.2) vs. 1.7 (0.2), p = 0.03.

CONCLUSIONS: A bright lighting environment for ICU nurses working the night shift reduces sleepiness but increases the number of psychomotor errors.

TRIAL REGISTRATION: ClinicalTrials.gov, NCT03331822 . Retrospectively registered on 6 November 2017.
Address Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, USA. rosengartmr@upmc.edu
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1364-8535 ISBN (up) Medium
Area Expedition Conference
Notes PMID:30424793 Approved no
Call Number GFZ @ kyba @ Serial 2070
Permanent link to this record
 

 
Author Gonzalez, M.M.C.; Golombek, D.A.
Title Editorial: Let There Be Light: Biological Impact of Light Exposure in the Laboratory and the Clinic Type Journal Article
Year 2018 Publication Frontiers in Neurology Abbreviated Journal Front Neurol
Volume 9 Issue Pages
Keywords Commentary; Animals
Abstract
Address Department of Science and Technology, Universidad Nacional de Quilmes, Bernal, Argentina
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1664-2295 ISBN (up) Medium
Area Expedition Conference
Notes PMID:30356725; PMCID:PMC6189324 Approved no
Call Number NC @ ehyde3 @ Serial 2072
Permanent link to this record
 

 
Author Hopkins, G.R.; Gaston, K.J.; Visser, M.E.; Elgar, M.A.; Jones, T.M.
Title Artificial light at night as a driver of evolution across urban-rural landscapes Type Journal Article
Year 2018 Publication Frontiers in Ecology and the Environment Abbreviated Journal Front Ecol Environ
Volume 16 Issue 8 Pages 472-479
Keywords Ecology, Commentary
Abstract Light is fundamental to biological systems, affecting the daily rhythms of bacteria, plants, and animals. Artificial light at night (ALAN), a ubiquitous feature of urbanization, interferes with these rhythms and has the potential to exert strong selection pressures on organisms living in urban environments. ALAN also fragments landscapes, altering the movement of animals into and out of artificially lit habitats. Although research has documented phenotypic and genetic differentiation between urban and rural organisms, ALAN has rarely been considered as a driver of evolution. We argue that the fundamental importance of light to biological systems, and the capacity for ALAN to influence multiple processes contributing to evolution, makes this an important driver of evolutionary change, one with the potential to explain broad patterns of population differentiation across urban–rural landscapes. Integrating ALAN's evolutionary potential into urban ecology is a targeted and powerful approach to understanding the capacity for life to adapt to an increasingly urbanized world.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1540-9295 ISBN (up) Medium
Area Expedition Conference
Notes Approved no
Call Number NC @ ehyde3 @ Serial 2073
Permanent link to this record