|   | 
Details
   web
Records
Author Mammola, S.; Isaia, M.; Demonte, D.; Triolo, P.; Nervo, M.
Title Artificial lighting triggers the presence of urban spiders and their webs on historical buildings Type Journal Article
Year 2018 Publication Landscape and Urban Planning Abbreviated Journal Landscape and Urban Planning
Volume 180 Issue Pages 187-194
Keywords Animals; Lighting
Abstract Different spider species living in the urban environment spin their webs on building facades. Due to air pollution, web aggregations entrap dirt particles over time, assuming a brownish-greyish colouration and thus determining an aesthetic impact on buildings and street furniture. In Europe, the most common species causing such an aesthetic nuisance is Brigittea civica (Lucas) (Dictynidae). In spite of the socio-economical relevance of the problem, the ecological factors driving the proliferation of this species in the urban environment are poorly described and the effectiveness of potential cleaning activities has never been discussed in scientific literature. Over one year, we studied the environmental drivers of B. civica webs in the arcades of the historical down-town district of Turin (NW-Italy). We selected a number of sampling plots on arcade ceilings and we estimated the density of B. civica webs by means of digital image analysis. In parallel, we collected information on a number of potential explanatory variables driving the arcade colonization, namely artificial lighting at night, substrate temperature, distance from the main artificial light sources and distance from the river. Regression analysis showed that the coverage of spider webs increased significantly at plots with higher light intensity, with a major effect related to the presence of historical lampposts with incandescent lamps rather than halogen lamps. We also detected a seasonal variation in the web coverage, with significant higher values in summer. Stemming from our results, we are able to suggest good practices for the containment of this phenomenon.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 0169-2046 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 2002
Permanent link to this record
 

 
Author Azam, C.; Le Viol, I.; Bas, Y.; Zissis, G.; Vernet, A.; Julien, J.-F.; Kerbiriou, C.
Title Evidence for distance and illuminance thresholds in the effects of artificial lighting on bat activity Type Journal Article
Year 2018 Publication Landscape and Urban Planning Abbreviated Journal Landscape and Urban Planning
Volume 175 Issue Pages 123-135
Keywords Animals
Abstract Light pollution is a major threat to biodiversity worldwide. There is a crucial need to elaborate artificial lighting recommendations to mitigate its impact on wildlife. In the present study, we investigated how streetlight spatial position and light trespass impacted the use of ecological corridors by transiting bats in anthropogenic landscapes. Through a paired, in situ experiment, we estimated how streetlight distance of impact and vertical and horizontal illuminance influenced the transiting activity of 6 species and 2 genera of bats. We selected 27 pairs composed of 1 lit site and 1 control unlit site in areas practicing either part-night or full-night lighting. We recorded bat activity at 0, 10, 25, 50 and 100 m, and measured vertical and horizontal light illuminance at the 5 distance steps (range = 0.1–30.2 lx). While streetlight attraction effect was mostly limited to a 10 m radius for Pipistrellus sp. and Nyctalus sp., streetlight avoidance was detected at up to 25 and 50 m for Myotis sp. and Eptesicus serotinus, respectively. Streetlight effects on Myotis sp. and Nyctalus sp. remained after lamps were turned-off. Illuminance had a negative effect on Myotis sp. below 1 lx, a mixed effect on E. serotinus, and a positive effect on the other species, although a peak of activity was observed between 1 and 5 lx for P. pipistrellus and N. leisleri. We recommend separating streetlights from ecological corridors by at least 50 m and avoiding vertical light trespass beyond 0.1 lx to ensure their use by light-sensitive bats.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 0169-2046 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 1842
Permanent link to this record
 

 
Author Wilson, P.; Thums, M.; Pattiaratchi, C.; Meekan, M.; Pendoley, K.; Fisher, R.; Whiting, S.
Title Artificial light disrupts the nearshore dispersal of neonate flatback turtles Natator depressus Type Journal Article
Year 2018 Publication Marine Ecology Progress Series Abbreviated Journal Mar. Ecol. Prog. Ser.
Volume 600 Issue Pages 179-192
Keywords Animals
Abstract After emerging from nests, neonate sea turtles entering the water are thought to orientate away from shore using wave cues to guide them out to sea. Artificial light may interfere with this process, but the relative importance of natural and anthropogenic cues to the dispersal of hatchlings is unknown. Here, we used acoustic telemetry to track the movement of flatback turtle (Natator depressus) hatchlings dispersing through nearshore waters. Turtles dispersed in the presence and absence of artificial light through a receiver array where a range of oceanographic variables were measured. Turtle tracks were analysed using a full subsets Generalised Additive Mixed Model approach to identify the most important cues influencing the bearing, variance in bearing (a measure of the ability to orientate directly), rate of travel and time spent in the array. Artificial light reduced their swim speed by up to 30%, increased the amount of time spent in nearshore waters (by 50–150%) and increased the variance in bearing (100–180% more variable), regardless of oceanographic conditions. Under ambient conditions, ocean currents affected the bearing of hatchlings as they left the shore, but when light was present, this effect was diminished, showing turtles actively swam against currents in their attempts to move towards light. After accounting for the effects of currents on hatchlings dispersing under ambient conditions, turtles swam offshore by moving perpendicular to the coastline and did not appear to orient into incident wave direction. Overall, light disrupted the dispersal of hatchlings causing them to linger, become disoriented in the near shore and expend energy swimming against ocean currents.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 0171-8630 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 1967
Permanent link to this record
 

 
Author Maggi, E.; Benedetti-Cecchi, L.
Title Trophic compensation stabilizes marine primary producers exposed to artificial light at night Type Journal Article
Year 2018 Publication Marine Ecology Progress Series Abbreviated Journal Mar. Ecol. Prog. Ser.
Volume 606 Issue Pages 1-5
Keywords Plants; Animals; Ecology
Abstract Artificial light at night (ALAN) is a widespread phenomenon along coastal areas. Despite increasing evidence of pervasive effects of ALAN on patterns of species distribution and abundance, the potential of this emerging threat to alter ecological processes in marine ecosystems has remained largely unexplored. Here, we show how exposure to white LED lighting, comparable to that experienced along local urbanized coasts, significantly enhanced the impact of grazing gastropods on epilithic microphytobenthos (MPB). ALAN increased both the photosynthetic biomass of MPB and the grazing pressure of gastropods, such that consumers compensated for the positive effect of night lighting on primary producers. Our results indicate that trophic interactions can provide a stabilizing compensatory mechanism against ALAN effects in natural food webs.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 0171-8630 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 2063
Permanent link to this record
 

 
Author Underhill, V.A.; Höbel, G.
Title Mate choice behavior of female Eastern Gray Treefrogs (Hyla versicolor) is robust to anthropogenic light pollution Type Journal Article
Year 2018 Publication Ethology Abbreviated Journal Ethology
Volume 124 Issue 8 Pages 537-548
Keywords Animals
Abstract Human activities are drastically changing the amount of artificial light entering natural habitats. Because light pollution alters the sensory environment, it may interfere with behaviors ranging from prey detection and vigilance to mate choice. Here, we test the hypothesis that anthropogenic light pollution affects the mate choice behavior of female Eastern Gray Treefrogs (Hyla versicolor). We tested this hypothesis under two experimental light treatments that simulate the light pollution created by streetlights (expansion of lit areas and increased light intensity), and the light pollution created by headlights of passing vehicles (rapid fluctuations between bright and dark conditions). The hypothesis predicts that females tested under conditions simulating light pollution will show behavioral changes geared toward mitigating detection by predators, such as relaxed preferences, decreased choosiness for the normally preferred call, and differences in approach behavior (either more directional, faster, or stealthier movements, or no approach at all). Contrary to our prediction, we found that light pollution did not affect mate choice behavior in Gray Treefrogs, and should therefore neither interfere with population persistence nor affect the sexual selection regimes on male call traits of this species. However, we caution that this result does not imply that anthropogenic light pollution is of no concern for amphibian conservation, because behavioral responses to variation in nocturnal light levels (both in the natural as well as anthropogenically enhanced range) seem to be highly species‐specific in anurans. We encourage additional studies to help gage the vulnerability of anurans to anthropogenic light pollution.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 0179-1613 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number NC @ ehyde3 @ Serial 2090
Permanent link to this record