|   | 
Details
   web
Records
Author Vaaja, M. T., Kurkela, M., Maksimainen, M., Virtanen, J., Kukko, A., Lehtola, V. V., Hyyppä, J., & Hyyppä, H.
Title MOBILE MAPPING OF NIGHT-TIME ROAD ENVIRONMENT LIGHTING CONDITIONS Type Journal Article
Year 2018 Publication The Photogrammetric Journal of Finland Abbreviated Journal
Volume 26 Issue 1 Pages
Keywords Lighting; Remote Sensing
Abstract The measurement of 3D geometry for road environments is one of the main applications of mobile mapping systems (MMS). We present mobile mapping applied to a night-time road environment. We integrate the measurement of luminances into a georeferenced 3D point cloud. The luminance measurement and the 3D point cloud acquired with an MMS are used in assessing road environment lighting conditions. Luminance (cd/m2) was measured with a luminance-calibrated panoramic camera system, and point cloud was produced by laser scanners. The relative orientation between the GNSS, IMU, camera, and laser scanner sensors was solved in order to

integrate the data sets into the same coordinate system. Hence, the georeferenced luminance values are transferable into geographic information systems (GIS). The method provides promising results for future road lighting assessment. In addition, this article demonstrates the night-time mobile mapping principle applied to a road section in Helsinki, Finland. Finally, we discuss the

future applications of mobile-mapped luminance point clouds.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ intern @ Serial 2650
Permanent link to this record
 

 
Author Stock, D. M.
Title LOCALIZED LIGHT SENSORY IN RELATION TO GRAZING ACTIVITY OF ECHINOMETRA MATHAEI Type Journal Article
Year 2018 Publication Abbreviated Journal
Volume Issue Pages
Keywords Animals
Abstract This paper offers insight on the regulation of nocturnal behavior in burrowing sea urchin Echinometra mathaei of the Pacific. While it is known E. mathaei maintains nocturnal hours of activity (primarily grazing, burrowing, and locomotion), it is unknown whether this pattern follows a circadian rhythm or responds to local conditions of darkness. Varying light treatments were tested to determine potential manipulation of active behavior and explore potential for habitat destruction. Light manipulation was used to determine the role light sensory plays in the regulation of normal behavior. First utilizing gradual manipulation and later utilizing sudden manipulation to differentiate response to light stimuli. It was determined that while E. mathaei maintains nocturnal

activity via localized light sensory, manipulation of latent hours could not be significantly reproduced. It was found that while light manipulation can be responsible for simulating hours of activity, light manipulation cannot replicate latent hours. Upon exploration of predator response capability in E. mathaei following manipulation, it was found that individuals exposed to prolonged periods of artificial light had slower predation response times than individuals acclimated to a regular pattern of light exposure. These findings connect potential habitat degradation via grazing behaviors of E. mathaei to anthropogenic activity in Mo’orea, French Polynesia.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ intern @ Serial 2653
Permanent link to this record
 

 
Author Wuchterl, G.; Reithofer, M.
Title Licht über Wien VI Type Journal Article
Year 2018 Publication Abbreviated Journal
Volume Issue Pages
Keywords Skyglow
Abstract Im Zentrum Wiens sättigt die Erhellung der Nacht, am Stadtrand sinken die jährlichen Zuwächse, wäh-rend im Abstand von 36 Kilometern (Großmugl) die Nächte um 10 % pro Jahr heller werden.Der Gesamtaufwand der Wiener Lichtglocke liegt 2018 bei 37 MW. Der Verlauf von 2011 bis 2018 zeigt ein deutliches Lichtmaximum um 2014 und 2015. Danach stellen wir einen allmählichen Rückgang fest.Der Verlauf der Lichtglocke und noch deutlicher jener der Einzelstationen zeigt signifikante Schwankun-gen von Jahr zu Jahr. Zur Aufklärung der Ursachen, die weder astronomisch noch meteorologisch sind, wur-den monatliche Analysen des Lichtmessnetzes mit Daten des Luftmessnetzes der Wiener MA 22 kombiniert. Die natürliche Variation über das Jahr wurde genutzt, um Zusammenhänge zwischen den Monatsmedianen von Luftfeuchtigkeit und Feinstaub mit jenen der Globalstrahlungsdaten zu suchen.Von 2016 bis 2018 korrelieren die Globalstrahlungswerte mit der relativen Luftfeuchtigkeit und den Feinstaubwerten (PM10 und PM2,5). Die engste Beziehung besteht auf der Kuffner-Sternwarte, wo eine Verdoppelung der Luftfeuchtigkeit statistisch von einer Verzehnfachung der Globalstrahlung begleitet wird. Die gefundenen Relationen sind über einen Faktor 100 in der Globalstrahlung äußerst robust und die Koeffizienten der Relationen sind an allen Stationen sehr homogen.Damit stehen gut bestimmte Zusammenhänge zwischen der Luftgüte und dem Zustand der klaren Atmo-sphäre zur Verfügung. Das wird es erlauben, Lichtmessnetze auf Standardatmosphären zu beziehen und damit eine wesentlich bessere Vergleichbarkeit der Daten zu unterschiedlichen Zeitpunkten herzustellen.- 130 Gigawattstunden Jahresaufwand für die Wiener Lichtglocke- 8 Jahre Vermessung der Lichtglocke zeigen Ansätze eines Rückgangs der Lichtflut- Mehr Feinstaub bewirkt überproportional mehr Lichtverschmutzung
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language German Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 2718
Permanent link to this record
 

 
Author Ehrlich, D.; Schiavina, M.; Pesaresi, M.; Kemper, T.
Title Detecting spatial pattern of inequalities from remote sensing – Towards mapping of deprived communities and poverty Type Journal Article
Year 2018 Publication EUR 29465 EN Abbreviated Journal
Volume Issue Pages JRC113941
Keywords Remote Sensing
Abstract Spatial inequalities across the globe are not easy to detect and satellite data have shown to be of use in this task. Earth Observation (EO) data combined with other information sources can provide complementary information to those derived from traditional methods. This research shows patterns of inequalities emerging by combining global night lights measured from Earth Observation, population density and built-up in 2015. The focus of the paper is to describe the spatial patterns that emerge by combing the three variables. This work focuses on processing EO data to derive information products, and in combining built-up- and population density with night-time lights emission. The built-up surface was derived entirely from remote sensing archives using artificial intelligence and pattern recognition techniques. The built-up was combined with population census data to derive population density. Also the night-time lights emission data were available from EO satellite sensors. The three layers are subsequently combined as three colour compositions based on the three primary colours (i.e. red, green and blue) to display the “spatial human settlement pattern” maps. These GHSL nightlights provide insights in inequalities across the globe. Many patterns seem to be associated with countries income. Typically, high income countries are very well lit at night, low income countries are poorly lit at night. All larger cities of the world are lit at night, those in low-income countries are often less well lit than cites in high-income countries. There are also important differences in nightlights emission in conflict areas, or along borders of countries. This report provides a selected number of patterns that are described at the regional, national and local scale. However, in depth analysis would be required to assess more precisely that relation between wealth access to energy and countries GDP, for example. This work also addresses regional inequality in GHSL nightlights in Slovakia. The country was selected to address the deprivation of the Roma minority community. The work aims to relate the information from the GHSL nightlights with that collected from field survey and census information conducted at the national level. Socio-economic data available at subnational level was correlated with nightlight. The analysis shows that despite the potential of GHSL nightlights in identifying deprived areas, the measurement scale of satellite derived nightlights at 375 x 375 m to 750 x 750 m pixel size is too coarse to capture the inequalities of deprived communities that occur at finer scale. In addition, in the European context, the gradient of inequality is not strong enough to produce strong evidence. Although there is a specific pattern of GHSL nightlights in settlements with high Roma presence, this cannot be used to identify such areas among the others. This work is part of the exploratory data analysis conducted within the GHSL team. The exploratory analysis will be followed by more quantitative assessments that will be available in future work.
Address
Corporate Author Thesis
Publisher European Union Place of Publication Luxembourg Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) ISBN 978-92-79-97528-8 Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 2821
Permanent link to this record
 

 
Author Kersavage, K.; Skinner, N.P.; Bullough, J.D.; Garvey, P.M.; Donnell, E.T.; Rea, M.S.
Title Investigation of flashing and intensity characteristics for vehicle-mounted warning beacons Type Journal Article
Year 2018 Publication Accident Analysis & Prevention Abbreviated Journal Accident Analysis & Prevention
Volume 119 Issue Pages 23-28
Keywords Security; Public Safety; Lighting
Abstract Reducing the potential for crashes involving front line service workers and passing vehicles is important for increasing worker safety in work zones and similar locations. Flashing yellow warning beacons are often used to protect, delineate, and provide visual information to drivers within and approaching work zones. A nighttime field study using simulated workers, with and without reflective vests, present outside trucks was conducted to evaluate the effects of different warning beacon intensities and flash frequencies. Interactions between intensity and flash frequency were also analyzed. This study determined that intensitiesof 25/2.5 cd and 150/15 cd (peak/trough intensity) provided the farthest detection distances of the simulated worker. Mean detection distances in response to a flash frequency of 1 Hz were not statistically different from those in response to 4 Hz flashing. Simulated workers wearing reflective vests were seen the farthest distances away from the trucks for all combinations of intensity and flash frequency.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 0001-4575 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 1950
Permanent link to this record