|
Records |
Links |
|
Author |
Grubisic, M.; Singer, G.; Bruno, M.C.; van Grunsven, R.H.A.; Manfrin, A.; Monaghan, M.T.; Hölker, F. |

|
|
Title |
A pigment composition analysis reveals community changes in pre-established stream periphyton under low-level artificial light at night |
Type |
Journal Article |
|
Year |
2018 |
Publication |
Limnologica |
Abbreviated Journal |
|
|
|
Volume |
69 |
Issue |
|
Pages |
55-58 |
|
|
Keywords |
Plants; Ecology |
|
|
Abstract |
Freshwaters are increasingly exposed to artificial light at night (ALAN), yet the consequences for aquatic primary producers remain largely unknown. We used stream-side flumes to expose three-week-old periphyton to LED light. Pigment composition was used to infer community changes in LED-lit and control periphyton before and after three weeks of treatment. The proportion of diatoms/chrysophytes decreased (14%) and cyanobacteria increased (17%) in lit periphyton in spring. This may reduce periphyton nutritional quality in artificially-lit waters. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN  |
0075-9511 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
|
Approved |
no |
|
|
Call Number |
LoNNe @ schroer @ |
Serial |
1791 |
|
Permanent link to this record |
|
|
|
|
Author |
Garcia-Saenz, A.; Sánchez de Miguel, A.; Espinosa, A.; Valentin, A.; Aragonés, N.; Llorca, J.; Amiano, P.; Martín Sánchez, V.; Guevara, M.; Capelo, R.; Tardón, A.; Peiró-Perez, R.; Jiménez-Moleón, J.J.; Roca-Barceló, A.; Pérez-Gómez, B.; Dierssen-Sotos, T.; Fernández-Villa, T.; Moreno-Iribas, C.; Moreno, V.; García-Pérez, J.; Castaño-Vinyals, G.; Pollán, M.; Aubé, M.; Kogevinas, M. |

|
|
Title |
Evaluating the Association between Artificial Light-at-Night Exposure and Breast and Prostate Cancer Risk in Spain (MCC-Spain Study) |
Type |
Journal Article |
|
Year |
2018 |
Publication |
Environmental Health Perspectives |
Abbreviated Journal |
|
|
|
Volume |
126 |
Issue |
04 |
Pages |
|
|
|
Keywords |
Human Health; Remote Sensing |
|
|
Abstract |
Background: Night shift work, exposure to light at night (ALAN) and circadian disruption may increase the risk of hormone-dependent cancers.
Objectives: We evaluated the association of exposure to ALAN during sleeping time with breast and prostate cancer in a population based multicase–control study (MCC-Spain), among subjects who had never worked at night. We evaluated chronotype, a characteristic that may relate to adaptation to light at night.
Methods: We enrolled 1,219 breast cancer cases, 1,385 female controls, 623 prostate cancer cases, and 879 male controls from 11 Spanish regions in 2008–2013. Indoor ALAN information was obtained through questionnaires. Outdoor ALAN was analyzed using images from the International Space Station (ISS) available for Barcelona and Madrid for 2012–2013, including data of remotely sensed upward light intensity and blue light spectrum information for each geocoded longest residence of each MCC-Spain subject.
Results: Among Barcelona and Madrid participants with information on both indoor and outdoor ALAN, exposure to outdoor ALAN in the blue light spectrum was associated with breast cancer [adjusted odds ratio (OR) for highest vs. lowest tertile, OR=1.47; 95% CI: 1.00, 2.17] and prostate cancer (OR=2.05; 95% CI: 1.38, 3.03). In contrast, those exposed to the highest versus lowest intensity of outdoor ALAN were more likely to be controls than cases, particularly for prostate cancer. Compared with those who reported sleeping in total darkness, men who slept in “quite illuminated” bedrooms had a higher risk of prostate cancer (OR=2.79; 95% CI: 1.55, 5.04), whereas women had a slightly lower risk of breast cancer (OR=0.77; 95% CI: 0.39, 1.51).
Conclusion: Both prostate and breast cancer were associated with high estimated exposure to outdoor ALAN in the blue-enriched light spectrum. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN  |
0091-6765 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
|
Approved |
no |
|
|
Call Number |
GFZ @ kyba @ |
Serial |
1871 |
|
Permanent link to this record |
|
|
|
|
Author |
Garcia-Saenz, A.; Sanchez de Miguel, A.; Espinosa, A.; Valentin, A.; Aragones, N.; Llorca, J.; Amiano, P.; Martin Sanchez, V.; Guevara, M.; Capelo, R.; Tardon, A.; Peiro-Perez, R.; Jimenez-Moleon, J.J.; Roca-Barcelo, A.; Perez-Gomez, B.; Dierssen-Sotos, T.; Fernandez-Villa, T.; Moreno-Iribas, C.; Moreno, V.; Garcia-Perez, J.; Castano-Vinyals, G.; Pollan, M.; Aube, M.; Kogevinas, M. |

|
|
Title |
Evaluating the Association between Artificial Light-at-Night Exposure and Breast and Prostate Cancer Risk in Spain (MCC-Spain Study) |
Type |
Journal Article |
|
Year |
2018 |
Publication |
Environmental Health Perspectives |
Abbreviated Journal |
Environ Health Perspect |
|
|
Volume |
126 |
Issue |
4 |
Pages |
047011 |
|
|
Keywords |
Human Health; Remote Sensing; Adult; Aged; Aged, 80 and over; Breast Neoplasms/*epidemiology/etiology; Case-Control Studies; Circadian Rhythm; Female; Humans; Incidence; Light/*adverse effects; Lighting/*adverse effects; Male; Middle Aged; Prostatic Neoplasms/*epidemiology/etiology; Risk Factors; Spain/epidemiology; Young Adult |
|
|
Abstract |
BACKGROUND: Night shift work, exposure to light at night (ALAN) and circadian disruption may increase the risk of hormone-dependent cancers. OBJECTIVES: We evaluated the association of exposure to ALAN during sleeping time with breast and prostate cancer in a population based multicase-control study (MCC-Spain), among subjects who had never worked at night. We evaluated chronotype, a characteristic that may relate to adaptation to light at night. METHODS: We enrolled 1,219 breast cancer cases, 1,385 female controls, 623 prostate cancer cases, and 879 male controls from 11 Spanish regions in 2008-2013. Indoor ALAN information was obtained through questionnaires. Outdoor ALAN was analyzed using images from the International Space Station (ISS) available for Barcelona and Madrid for 2012-2013, including data of remotely sensed upward light intensity and blue light spectrum information for each geocoded longest residence of each MCC-Spain subject. RESULTS: Among Barcelona and Madrid participants with information on both indoor and outdoor ALAN, exposure to outdoor ALAN in the blue light spectrum was associated with breast cancer [adjusted odds ratio (OR) for highest vs. lowest tertile, OR=1.47; 95% CI: 1.00, 2.17] and prostate cancer (OR=2.05; 95% CI: 1.38, 3.03). In contrast, those exposed to the highest versus lowest intensity of outdoor ALAN were more likely to be controls than cases, particularly for prostate cancer. Compared with those who reported sleeping in total darkness, men who slept in “quite illuminated” bedrooms had a higher risk of prostate cancer (OR=2.79; 95% CI: 1.55, 5.04), whereas women had a slightly lower risk of breast cancer (OR=0.77; 95% CI: 0.39, 1.51). CONCLUSION: Both prostate and breast cancer were associated with high estimated exposure to outdoor ALAN in the blue-enriched light spectrum. https://doi.org/10.1289/EHP1837. |
|
|
Address |
IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
English |
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN  |
0091-6765 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
PMID:29687979; PMCID:PMC6071739 |
Approved |
no |
|
|
Call Number |
GFZ @ kyba @ |
Serial |
3044 |
|
Permanent link to this record |
|
|
|
|
Author |
Jones, B.A. |

|
|
Title |
Spillover health effects of energy efficiency investments: Quasi-experimental evidence from the Los Angeles LED streetlight program |
Type |
Journal Article |
|
Year |
2018 |
Publication |
Journal of Environmental Economics and Management |
Abbreviated Journal |
Journal of Environmental Economics and Management |
|
|
Volume |
88 |
Issue |
|
Pages |
283-299 |
|
|
Keywords |
Human Health; LED; public health; outdoor lighting; Los Angeles; economics; energy efficiency; breast cancer; fossil fuel carbon emissions |
|
|
Abstract |
Payback estimates of energy efficiency investments often ignore public health externalities. This is problematic in cases where spillover health effects are substantial, such as when the application of new technology alters environmental exposures. When health externalities are included in return on investment calculations, energy efficiency programs may look more or less attractive than suggested by conventional “energy savings only” estimates. This analysis exploits the quasi-experiment provided by the 2009 Los Angeles (LA) LED streetlight efficiency program to investigate the returns on investments inclusive of an originally estimated health externality. Using the synthetic control method, we find that the LED streetlight program is associated with a lagged increase in breast cancer mortality of 0.479 per 100,000. Inclusive of the effects of LEDs on breast cancer and avoided carbon emissions, the LA LED program provides a −146.2% 10-year return compared to +118.2% when health outcomes and carbon emissions are ignored. |
|
|
Address |
Department of Economics, University of New Mexico, 1 UNM Drive, MSC 05 3060, Albuquerque, NM, 87131, USA; bajones(at)unm.edu |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
Elsevier |
Place of Publication |
|
Editor |
|
|
|
Language |
English |
Summary Language |
English |
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN  |
0095-0696 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
|
Approved |
no |
|
|
Call Number |
IDA @ john @ |
Serial |
1976 |
|
Permanent link to this record |
|
|
|
|
Author |
Bian, Z.; Cheng, R.; Wang, Y.; Yang, Q.; Lu, C. |

|
|
Title |
Effect of green light on nitrate reduction and edible quality of hydroponically grown lettuce ( Lactuca sativa L.) under short-term continuous light from red and blue light-emitting diodes |
Type |
Journal Article |
|
Year |
2018 |
Publication |
Environmental and Experimental Botany |
Abbreviated Journal |
Environmental and Experimental Botany |
|
|
Volume |
153 |
Issue |
|
Pages |
63-71 |
|
|
Keywords |
Plants |
|
|
Abstract |
Most leafy vegetables can accumulate large amounts of nitrate, which are often associated with harmful effects on human health. Nitrate assimilation in plants is determined by various growth conditions, especially light conditions including light intensity, light duration and light spectral composition. Red and blue light are the most important since both drive photosynthesis. Increasingly, recent evidence demonstrates a role for green light in the regulation of plant growth and development by regulating the expression of some specific genes. However, the effect of green light on nitrate assimilation has been underestimated. In this study, lettuce (Lactuca sativa L. cv. Butterhead) was treated with continuous light (CL) for 48 h by combined red and blue light-emitting diodes (LEDs) supplemented with or without green LED in an environment-controlled growth chamber. The results showed that nitrate reductase (NR) and nitrite reductase (NiR) related-gene expression and nitrate assimilation enzyme activities were affected by light spectral composition and light duration of CL. Adding green light to red and blue light promoted NR and NiR expressions at 24 h, subsequently, it reduced expression of these genes during CL. Compared with red and blue LEDs, green light supplementation significantly increased NR, NiR, glutamate synthase (GOGAT) and glutamine synthetase (GS) activities. Green-light supplementation under red and blue light was more efficient in promoting nutritional values by maintaining high net photosynthetic rates (Pn) and maximal photochemical efficiency (Fv/Fm). |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN  |
0098-8472 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
|
Approved |
no |
|
|
Call Number |
GFZ @ kyba @ |
Serial |
1915 |
|
Permanent link to this record |