toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Fotios, S.; Monteiro, A.L.; Uttley, J. url  doi
openurl 
  Title Evaluation of pedestrian reassurance gained by higher illuminances in residential streets using the day–dark approach Type Journal Article
  Year 2018 Publication Lighting Research & Technology Abbreviated Journal Lighting Research & Technology  
  Volume in press Issue Pages  
  Keywords Vision; Psychology; Security  
  Abstract A field study was conducted to investigate how changes in the illuminance affect pedestrian reassurance when walking after dark in an urban location. The field study was conducted in daytime and after dark in order to employ the day–dark approach to analysis of optimal lighting. The results suggest that minimum illuminance is a better predictor of reassurance than is mean illuminance. For a day–dark difference of 0.5 units on a 6-point response scale, the results suggest a minimum horizontal illuminance of approximately 2.0 lux.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 1477-1535 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 2159  
Permanent link to this record
 

 
Author Huang, Z.; Liu, Q.; Westland, S.; Pointer, M.; Luo, M.R.; Xiao, K. url  doi
openurl 
  Title Light dominates colour preference when correlated colour temperature differs Type Journal Article
  Year 2018 Publication Lighting Research & Technology Abbreviated Journal Lighting Research & Technology  
  Volume 50 Issue 7 Pages 995-1012  
  Keywords Vision; Lighting  
  Abstract Colour preference for lighting is generally influenced by three kinds of contextual factors, the light, the object and the observer. In this study, a series of psychophysical experiments were conducted to investigate and compare the effect of certain factors on colour preference, including spectral power distribution of light, lighting application, observers’ personal colour preference, regional cultural difference and gender difference. LED lights with different correlated colour temperatures were used to illuminate a wide selection of objects. Participant response was quantified by a 7-point rating method or a 5-level ranking method. It was found that the preferred illumination for different objects exhibited a similar trend and that the influence of light was significantly stronger than that of other factors. Therefore, we conclude that the light itself (rather than, e.g. the objects that are viewed) is the most crucial factor for predicting which light, among several candidates with different correlated colour temperatures, an observer will prefer. In addition, some of the gamut-based colour quality metrics correlated well with the participants’ response, which corroborates the view that colour preference is strongly influenced by colour saturation. The familiarity of the object affects the ratings for each experiment while the colour of the objects also influences colour preference.  
  Address School of Printing and Packaging, Wuhan University, Luoyu Road 129, Wuhan, China; liuqiang(at)whu.edu.cn  
  Corporate Author Thesis  
  Publisher SAGE Place of Publication Editor  
  Language English Summary Language English Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 1477-1535 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number IDA @ john @ Serial 2256  
Permanent link to this record
 

 
Author Boswell, W.T.; Boswell, M.; Walter, D.J.; Navarro, K.L.; Chang, J.; Lu, Y.; Savage, M.G.; Shen, J.; Walter, R.B. url  doi
openurl 
  Title Exposure to 4100K fluorescent light elicits sex specific transcriptional responses in Xiphophorus maculatus skin Type Journal Article
  Year 2018 Publication Comparative Biochemistry and Physiology. Toxicology & Pharmacology : CBP Abbreviated Journal Comp Biochem Physiol C Toxicol Pharmacol  
  Volume 208 Issue Pages 96-104  
  Keywords Animals  
  Abstract It has been reported that exposure to artificial light may affect oxygen intake, heart rate, absorption of vitamins and minerals, and behavioral responses in humans. We have reported specific gene expression responses in the skin of Xiphophorus fish after exposure to ultraviolet light (UV), as well as, both broad spectrum and narrow waveband visible light. In regard to fluorescent light (FL), we have shown that male X. maculatus exposed to 4100K FL (i.e. “cool white”) rapidly suppress transcription of many genes involved with DNA replication and repair, chromosomal segregation, and cell cycle progression in skin. We have also detailed sex specific transcriptional responses of Xiphophorus skin after exposure to UVB. However, investigation of gender differences in global gene expression response after exposure to 4100K FL has not been reported, despite common use of this FL source for residential, commercial, and animal facility illumination. Here, we compare RNASeq results analyzed to assess changes in the global transcription profiles of female and male X. maculatus skin in response to 4100K FL exposure. Our results suggest 4100K FL exposure incites a sex-biased genetic response including up-modulation of inflammation in females and down modulation of DNA repair/replication in males. In addition, we identify clusters of genes that become oppositely modulated in males and females after FL exposure that are principally involved in cell death and cell proliferation.  
  Address Department of Chemistry and Biochemistry, Xiphophorus Genetic Stock Center, Texas State University, 601 University Drive, San Marcos, TX 78666, USA. Electronic address: RW12@txstate.edu  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 1532-0456 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:28965926 Approved no  
  Call Number LoNNe @ kyba @ Serial 1739  
Permanent link to this record
 

 
Author Gonzalez, T.J.; Lu, Y.; Boswell, M.; Boswell, W.; Medrano, G.; Walter, S.; Ellis, S.; Savage, M.; Varga, Z.M.; Lawrence, C.; Sanders, G.; Walter, R.B. url  doi
openurl 
  Title Fluorescent light exposure incites acute and prolonged immune responses in Zebrafish (Danio rerio) skin Type Journal Article
  Year 2018 Publication Comparative Biochemistry and Physiology. Toxicology & Pharmacology : CBP Abbreviated Journal Comp Biochem Physiol C Toxicol Pharmacol  
  Volume 208 Issue Pages 87-95  
  Keywords Animals  
  Abstract Artificial light produces an emission spectrum that is considerably different than the solar spectrum. Artificial light has been shown to affect various behavior and physiological processes in vertebrates. However, there exists a paucity of data regarding the molecular genetic effects of artificial light exposure. Previous studies showed that one of the commonly used fluorescent light source (FL; 4100K or “cool white”) can affect signaling pathways related to maintenance of circadian rhythm, cell cycle progression, chromosome segregation, and DNA repair/recombination in the skin of male Xiphophorus maculatus. These observations raise questions concerning the kinetics of the FL induced gene expression response, and which biological functions become modulated at various times after light exposure. To address these questions, we exposed zebrafish to 4100K FL and utilized RNASeq to assess gene expression changes in skin at various times (1 to 12h) after FL exposure. We found 4100K FL incites a robust early (1-2h) transcriptional response, followed by a more protracted late response (i.e., 4-12h). The early transcriptional response involves genes associated with cell migration/infiltration and cell proliferation as part of an overall increase in immune function and inflammation. The protracted late transcriptional response occurs within gene sets predicted to maintain and perpetuate the inflammatory response, as well as suppression of lipid, xenobiotic, and melatonin metabolism.  
  Address Xiphophorus Genetic Stock Center, Department of Chemistry and Biochemistry, 419 Centennial Hall, Texas State University, 601 University Drive, San Marcos, TX 78666, USA. Electronic address: RWalter@txstate.edu  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 1532-0456 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:28965927 Approved no  
  Call Number LoNNe @ kyba @ Serial 1740  
Permanent link to this record
 

 
Author Kernbach, M.E.; Hall, R.J.; Burkett-Cadena, N.; Unnasch, T.R.; Martin, L.B. url  doi
openurl 
  Title Dim light at night: physiological effects and ecological consequences for infectious disease Type Journal Article
  Year 2018 Publication Integrative and Comparative Biology Abbreviated Journal Integr Comp Biol  
  Volume 58 Issue 5 Pages 995-1007  
  Keywords Animals  
  Abstract Light pollution has emerged as a pervasive component of land development over the past century. Several detrimental impacts of this anthropogenic influence have been identified in night shift workers, laboratory rodents, and a plethora of wildlife species. Circadian, or daily, patterns are interrupted by the presence of light at night and have the capacity to alter rhythmic physiological or behavioral characteristics. Indeed, biorhythm disruption can lead to metabolic, reproductive, and immunological dysfunction depending on the intensity, timing, duration and wavelength of light exposure. Light pollution, in many forms and by many pathways, is thus apt to affect the nature of host-pathogen interactions. However, no research has yet investigated this possibility. The goal of this manuscript is to outline how dim light at night (dLAN), a relevant and common form of light pollution, may affect disease dynamics by interrupting circadian rhythms and regulation of immune responses as well as opportunities for host-parasite interactions and subsequent transmission risk including spillover into humans. We close by proposing some promising interventions including alternative lighting methods or vector control efforts.  
  Address Department of Global Health, University of South Florida, Tampa FL  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 1540-7063 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:29939262 Approved no  
  Call Number GFZ @ kyba @ Serial 1946  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: