toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Peregrym, M., Kónya E. P., & Vasyliuk, O. url  doi
openurl 
  Title The impact of artificial light at night (ALAN) on the National Nature Parks, Biosphere and Naturе Reserves of the Steppe Zone and Crimean Mountains within Ukraine Type Journal Article
  Year 2018 Publication Palaearctic Grasslands Abbreviated Journal  
  Volume Issue Pages  
  Keywords Skyglow; Conservation  
  Abstract Artificial light at night (ALAN) and sky glow are a recognized anthropogenic pressure, but the consequences of this pressure on protected areas within Ukraine are unclear. This research attempted to estimate the level of light pollution on the protected territories of the National Nature Parks (NNPs), Biosphere and Nature Reserves in the Steppe Zone and Crimea Mountains of Ukraine. Kmz layers of

these protected territories and the New World Atlas of Artificial Sky Brightness, through Google Earth Pro, were used to calculate the level of artificial sky brightness for 15 NNPs, three Biosphere Reserves and 10 Nature Reserves. The results show that even some of the most protected areas within the Steppe Zone and Crimean Mountains are impacted by ALAN. Of the studied protected areas 44.2% have a natural dark night sky, 40.1% have artificial brightness ranging between 8 and 16%, and the remainder (15.7%) are polluted with an artificial brightness greater than 16%. Areas with light pollution greater than 16% are often situated near big cities or industrial centers. It was noted that light pollution levels were not taken into account during the creation of any protected areas within Ukraine.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number IDA @ intern @ Serial 2310  
Permanent link to this record
 

 
Author Lee, S., Matsumori, K., Nishimura, K., Nishimura, Y., Ikeda, Y., Eto, T., & Higuchi, S. url  doi
openurl 
  Title Melatonin suppression and sleepiness in children exposed to blue-enriched white LED lighting at night Type Journal Article
  Year 2018 Publication Physiological Reports Abbreviated Journal  
  Volume 6 Issue 24 Pages  
  Keywords Human Health  
  Abstract Light-induced melatonin suppression in children is reported to be more sensitive to white light at night than that in adults; however, it is unclear whether it depends on spectral distribution of lighting. In this study, we investigated the effects of different color temperatures of LED lighting on children’s melatonin secretion during the night. Twenty-two healthy children (8.9  2.2 years old) and 20 adults (41.7  4.4 years old) participated in this

study. A between-subjects design with four combinations, including two age

groups (adults and children) and the two color temperature conditions

(3000 K and 6200 K), was used. The experiment was conducted for two consecutive nights. On the first night, saliva samples were collected every hour

under a dim light condition (<30 lx). On the second night, the participants

were exposed to either color temperature condition. Melatonin suppression in

children was greater than that in adults at both 3000 K and 6200 K condition.

The 6200 K condition resulted in greater melatonin suppression than did the

3000 K condition in children (P < 0.05) but not in adults. Subjective sleepiness in children exposed to 6200 K light was significantly lower than that in

children exposed to 3000 K light. In children, blue-enriched LED lighting has

a greater impact on melatonin suppression and it inhibits the increase in

sleepiness during night. Light with a low color temperature is recommended

at night, particularly for children’s sleep and circadian rhythm.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number IDA @ intern @ Serial 2312  
Permanent link to this record
 

 
Author Zhao, Z., Zhou, Y., Tan, G., & Li, J. url  doi
openurl 
  Title Research progress about the effect and prevention of blue light on eyes Type Journal Article
  Year 2018 Publication International Journal of Ophthalmology Abbreviated Journal  
  Volume 11 Issue 12 Pages 1999-2003  
  Keywords Vision; Human Health; Review  
  Abstract In recent years, people have become increasingly attentive to light pollution influences on their eyes. In the visible spectrum, short-wave blue light with wavelength between 415 nm and 455 nm is closely related to eye light damage. This high energy blue light passes through the cornea and lens to the retina causing diseases such as dry eye, cataract, age-related macular degeneration, even stimulating the brain, inhibiting melatonin secretion, and enhancing adrenocortical hormone production, which will destroy the hormonal balance and directly affect sleep quality. Therefore, the effect of Blu-rays on ocular is becoming an important concern for the future. We describe blue light's effects on eye tissues, summarize the research on eye injury and its physical prevention and medical treatment.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number IDA @ intern @ Serial 2313  
Permanent link to this record
 

 
Author Lee, H. url  doi
openurl 
  Title Do We Use Artificial Light Appropriately? Type Journal Article
  Year 2018 Publication Psychiatry Investigation Abbreviated Journal  
  Volume 15 Issue 12 Pages  
  Keywords Commentary; Human Health  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number IDA @ intern @ Serial 2314  
Permanent link to this record
 

 
Author Windle, A. E., Hooley, D. S., & Johnston, D. W. url  doi
openurl 
  Title Robotic Vehicles Enable High-Resolution Light Pollution Sampling of Sea Turtle Nesting Beaches Type Journal Article
  Year 2018 Publication Frontiers in Marine Science Abbreviated Journal  
  Volume 5 Issue 493 Pages  
  Keywords Instrumentation; Animals; Skyglow  
  Abstract Nesting sea turtles appear to avoid brightly lit beaches and often turn back to sea prematurely when exposed to artificial light. Observations and experiments have noted that nesting turtles prefer darker areas where buildings and high dunes act as light barriers. As a result, sea turtles often nest on darker beaches, creating spatial concentrations of nests. Artificial nighttime light, or light pollution, has been quantified using a variety of methods. However, it has proven challenging to make accurate measurements of ambient light at fine scales and on smaller nesting beaches. Additionally, light has traditionally been measured from stationary tripods perpendicular to beach vegetation, disregarding the point of view of a nesting sea turtle. In the present study, nighttime ambient light conditions were assessed on three beaches in central North Carolina: a developed coastline of a barrier island, a nearby State Park on the same barrier island comprised of protected and undeveloped land, and a completely uninhabited wilderness on an adjacent barrier island in the Cape Lookout National Seashore. Using an autonomous terrestrial rover, high resolution light measurements (mag/arcsec2) were collected every minute with two ambient light sensors along transects on each beach. Spatial comparisons between ambient light and nesting density at and between these locations reveal that highest densities of nests occur in regions with lowest light levels, supporting the hypothesis that light pollution from coastal development may influence turtle nesting distribution. These results can be used to support ongoing management strategies to mitigate this pressing conservation issue.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number IDA @ intern @ Serial 2315  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: