toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Galadí-Enríquez, D. url  doi
openurl 
  Title Beyond CCT: The spectral index system as a tool for the objective, quantitative characterization of lamps Type Journal Article
  Year 2018 Publication Journal of Quantitative Spectroscopy and Radiative Transfer Abbreviated Journal JQSRT  
  Volume 206 Issue Pages 399-408  
  Keywords Lighting  
  Abstract Correlated color temperature (CCT) is a semi-quantitative system that roughly describes the spectra of lamps. This parameter gives the temperature (measured in kelvins) of the black body that would show the hue more similar to that of the light emitted by the lamp. Modern lamps for indoor and outdoor lighting display many spectral energy distributions, most of them extremely different to those of black bodies, what makes CCT to be far from a perfect descriptor from the physical point of view. The spectral index system presented in this work provides an accurate, objective, quantitative procedure to characterize the spectral properties of lamps, with just a few numbers. The system is an adaptation to lighting technology of the classical procedures of multi-band astronomical photometry with wide and intermediate-band filters. We describe the basic concepts and we apply the system to a representative set of lamps of many kinds. The results lead to interesting, sometimes surprising conclusions. The spectral index system is extremely easy to implement from the spectral data that are routinely measured at laboratories. Thus, including this kind of computations in the standard protocols for the certification of lamps will be really straightforward, and will enrich the technical description of lighting devices.  
  Address  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language English Summary Language English Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0022-4073 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 1835  
Permanent link to this record
 

 
Author Petržala, J. url  doi
openurl 
  Title Feasibility of inverse problem solution for determination of city emission function from night sky radiance measurements Type Journal Article
  Year 2018 Publication Journal of Quantitative Spectroscopy and Radiative Transfer Abbreviated Journal Journal of Quantitative Spectroscopy and Radiative Transfer  
  Volume 213 Issue Pages 86-94  
  Keywords Skyglow  
  Abstract The knowledge of the emission function of a city is crucial for simulation of sky glow in its vicinity. The indirect methods to achieve this function from radiances measured over a part of the sky have been recently developed. In principle, such methods represent an ill-posed inverse problem. This paper deals with the theoretical feasibility study of various approaches to solving of given inverse problem. Particularly, it means testing of fitness of various stabilizing functionals within the Tikhonov’s regularization. Further, the L-curve and generalized cross validation methods were investigated as indicators of an optimal regularization parameter. At first, we created the theoretical model for calculation of a sky spectral radiance in the form of a functional of an emission spectral radiance. Consequently, all the mentioned approaches were examined in numerical experiments with synthetical data generated for the fictitious city and loaded by random errors. The results demonstrate that the second order Tikhonov’s regularization method together with regularization parameter choice by the L-curve maximum curvature criterion provide solutions which are in good agreement with the supposed model emission functions.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0022-4073 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 1868  
Permanent link to this record
 

 
Author Duriscoe, D.M.; Anderson, S.J.; Luginbuhl, C.B.; Baugh, K.E. url  doi
openurl 
  Title A simplified model of all-sky artificial sky glow derived from VIIRS Day/Night band data Type Journal Article
  Year 2018 Publication Journal of Quantitative Spectroscopy and Radiative Transfer Abbreviated Journal Journal of Quantitative Spectroscopy and Radiative Transfer  
  Volume 214 Issue Pages 133-145  
  Keywords Skyglow; Remote Sensing  
  Abstract We present a simplified method using geographic analysis tools to predict the average artificial luminance over the hemisphere of the night sky, expressed as a ratio to the natural condition. The VIIRS Day/Night Band upward radiance data from the Suomi NPP orbiting satellite was used for input to the model. The method is based upon a relation between sky glow brightness and the distance from the observer to the source of upward radiance. This relationship was developed using a Garstang radiative transfer model with Day/Night Band data as input, then refined and calibrated with ground-based all-sky V-band photometric data taken under cloudless and low atmospheric aerosol conditions. An excellent correlation was found between observed sky quality and the predicted values from the remotely sensed data. Thematic maps of large regions of the earth showing predicted artificial V-band sky brightness may be quickly generated with modest computing resources. We have found a fast and accurate method based on previous work to model all-sky quality. We provide limitations to this method. The proposed model meets requirements needed by decision makers and land managers of an easy to interpret and understand metric of sky quality.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0022-4073 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 1879  
Permanent link to this record
 

 
Author Ayuga, C.E.T.; Zamorano, J. url  doi
openurl 
  Title LICA AstroCalc, a software to analyze the impact of artificial light: Extracting parameters from the spectra of street and indoor lamps Type Journal Article
  Year 2018 Publication Journal of Quantitative Spectroscopy and Radiative Transfer Abbreviated Journal Journal of Quantitative Spectroscopy and Radiative Transfer  
  Volume 214 Issue Pages 33-38  
  Keywords Vision; Lighting; Instrumentation  
  Abstract The night sky spectra of light-polluted areas is the result of the artificial light scattered back from the atmosphere and the reemission of the light after reflections in painted surfaces. This emission comes mainly from street and decorative lamps. We have built an extensive database of lamps spectra covering from UV to near IR and the software needed to analyze them. We describe the LICA-AstroCalc free software that is a user friendly GUI tool to extract information from our database spectra or any other user provided spectrum. The software also includes the complete color database of paints from NCS comprising 1950 types. This helps to evaluate how different colors modify the reflected spectra from different lamps. All spectroscopic measurements have been validated with recommendations from CIELAB and ISO from NCS database.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0022-4073 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 1882  
Permanent link to this record
 

 
Author Bouroussis, C.A.; Topalis, F.V. url  doi
openurl 
  Title The effect of the spectral response of measurement instruments in the assessment of night sky brightness Type Journal Article
  Year 2018 Publication Journal of Quantitative Spectroscopy and Radiative Transfer Abbreviated Journal Journal of Quantitative Spectroscopy and Radiative Transfer  
  Volume 216 Issue Pages 56-69  
  Keywords Skyglow; Instrumentation  
  Abstract This paper deals with the errors and uncertainties in skyglow measurements caused by the variation of sky's spectrum. It considers the theoretical spectral response of common instruments that are used for light pollution assessment. Various types of light sources were used in this investigation. This study calculates the spectral mismatch errors and the corresponding correction factors for each combination of instrument and light source. The calculation method is described and the results are presented in multiple figures. Calculated data show a big variation in potential errors that can be introduced when comparing readings of diverse instruments without considering the sky spectrum variation. This makes the spectral data of the sky a mandatory input to the dark sky assessment. Useful conclusions, related to instruments with better or worse behaviour, are derived from the calculations. The paper also includes suggestions on how to conduct multi-instrument measurements with or without spectral data.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0022-4073 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 1908  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: