toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Ouyang, J.Q.; Davies, S.; Dominoni, D. url  doi
openurl 
  Title Hormonally mediated effects of artificial light at night on behavior and fitness: linking endocrine mechanisms with function Type Journal Article
  Year 2018 Publication The Journal of Experimental Biology Abbreviated Journal J Exp Biol  
  Volume 221 Issue (down) Pt 6 Pages  
  Keywords Human Health; Alan; Glucocorticoid; Hormones; Light pollution; Melatonin; Metabolism; Sleep; Stress; Thyroid; Urban ecology  
  Abstract Alternation between day and night is a predictable environmental fluctuation that organisms use to time their activities. Since the invention of artificial lighting, this predictability has been disrupted and continues to change in a unidirectional fashion with increasing urbanization. As hormones mediate individual responses to changing environments, endocrine systems might be one of the first systems affected, as well as being the first line of defense to ameliorate any negative health impacts. In this Review, we first highlight how light can influence endocrine function in vertebrates. We then focus on four endocrine axes that might be affected by artificial light at night (ALAN): pineal, reproductive, adrenal and thyroid. Throughout, we highlight key findings, rather than performing an exhaustive review, in order to emphasize knowledge gaps that are hindering progress on proposing impactful and concrete plans to ameliorate the negative effects of ALAN. We discuss these findings with respect to impacts on human and animal health, with a focus on the consequences of anthropogenic modification of the night-time environment for non-human organisms. Lastly, we stress the need for the integration of field and lab experiments as well as the need for long-term integrative eco-physiological studies in the rapidly expanding field of light pollution.  
  Address Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow G12 8QQ, UK;  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-0949 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:29545373 Approved no  
  Call Number IDA @ john @ Serial 1817  
Permanent link to this record
 

 
Author Bará, S.; Rodríguez-Arós, Á.; Pérez, M.; Tosar, B.; Lima, R.; Sánchez de Miguel, A.; Zamorano, J. url  doi
openurl 
  Title Estimating the relative contribution of streetlights, vehicles, and residential lighting to the urban night sky brightness Type Journal Article
  Year 2018 Publication Lighting Research & Technology Abbreviated Journal Lighting Res & Tech  
  Volume Issue (down) October 2018 Pages  
  Keywords Remote Sensing; traffic; Roadway lighting  
  Abstract Under stable atmospheric conditions the brightness of the urban sky varies throughout the night following the time course of the anthropogenic emissions of light. Different types of artificial light sources (e.g. streetlights, residential, and vehicle lights) have specific time signatures, and this feature makes it possible to estimate the amount of brightness contributed by each of them. Our approach is based on transforming the time representation of the zenithal night sky brightness into a modal expansion in terms of the time signatures of the different sources of light. The modal coefficients, and hence the absolute and relative contributions of each type of source, can be estimated by means of a linear least squares fit. A practical method for determining the time signatures of different contributing sources is also described, based on wide-field time-lapse photometry of the urban nightscape. Our preliminary results suggest that, besides the dominant streetlight contribution, artificial light leaking out of the windows of residential buildings may account for a significant share of the time-varying part of the zenithal night sky brightness at the measurement locations, whilst the contribution of the vehicle lights seems to be significantly smaller.  
  Address Área de Óptica, Dept. Física Aplicada, Facultade de Óptica e Optometría, Universidade de Santiago de Compostela, Santiago de Compostela 15782, Galicia, Spain. salva.bara(at)usc.es  
  Corporate Author Thesis  
  Publisher SAGE Place of Publication Editor  
  Language English Summary Language English Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1477-1535 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 2052  
Permanent link to this record
 

 
Author Rybnikova, N.; Portnov, B.A. url  doi
openurl 
  Title Population-level study links short-wavelength nighttime illumination with breast cancer incidence in a major metropolitan area Type Journal Article
  Year 2018 Publication Chronobiology International Abbreviated Journal Chronobiol Int  
  Volume 35 Issue (down) 9 Pages 1198-1208  
  Keywords Human Health  
  Abstract Several population-level studies revealed a positive association between breast cancer (BC) incidence and artificial light at night (ALAN) exposure. However, the effect of short-wavelength illumination, implicated by laboratory research and small-scale cohort studies as the main driving force behind BC-ALAN association, has not been supported by any population-level study carried out to date. We investigated a possible link between BC and ALAN of different subspectra using a multi-spectral year-2011 satellite image, taken from the International Space Station, and superimposing it with year-2013 BC incidence data available for the Great Haifa Metropolitan Area in Israel. The analysis was performed using both ordinary least square (OLS) and spatial dependency models, controlling for socioeconomic and locational attributes of the study area. The study revealed strong associations between BC and blue and green light subspectra (B = 0.336 +/- 0.001 and B = 0.335 +/- 0.002, respectively; p < 0.01), compared to a somewhat weaker effect for the red subspectrum (B = 0.056 +/- 0.001; p < 0.01). However, spatial dependency models, controlling for spatial autocorrelation of regression residuals, confirmed only a positive association between BC incidence and short-wavelength (blue) ALAN subspectrum (z = 2.462, p < 0.05) while reporting insignificant associations between BC and either green (z = 1.425, p > 0.1) or red (z = -0.604, p > 0.1) subspectra. The obtained result is in line with the results of laboratory- and small-scale cohort studies linking short-wavelength nighttime illumination with circadian disruption and melatonin suppression. The detected effect of blue lights on BC incidence may help to develop informed illumination policies aimed at minimizing the adverse health effects of ALAN exposure on human health.  
  Address a Department of Natural Resources and Environmental Management , University of Haifa , Haifa , Israel  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0742-0528 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:29768068 Approved no  
  Call Number GFZ @ kyba @ Serial 1906  
Permanent link to this record
 

 
Author Jiang, W.; He, G.; Long, T.; Guo, H.; Yin, R.; Leng, W.; Liu, H.; Wang, G. url  doi
openurl 
  Title Potentiality of Using Luojia 1-01 Nighttime Light Imagery to Investigate Artificial Light Pollution Type Journal Article
  Year 2018 Publication Sensors Abbreviated Journal Sensors  
  Volume 18 Issue (down) 9 Pages 2900  
  Keywords Remote Sensing; Instrumentation  
  Abstract The successful launch of Luojia 1-01 complements the existing nighttime light data with a high spatial resolution of 130 m. This paper is the first study to assess the potential of using Luojia 1-01 nighttime light imagery for investigating artificial light pollution. Eight Luojia 1-01 images were selected to conduct geometric correction. Then, the ability of Luojia 1-01 to detect artificial light pollution was assessed from three aspects, including the comparison between Luojia 1-01 and the Suomi National Polar-Orbiting Partnership Visible Infrared Imaging Radiometer Suite (NPP-VIIRS), the source of artificial light pollution and the patterns of urban light pollution. Moreover, the advantages and limitations of Luojia 1-01 were discussed. The results showed the following: (1) Luojia 1-01 can detect a higher dynamic range and capture the finer spatial details of artificial nighttime light. (2) The averages of the artificial light brightness were different between various land use types. The brightness of the artificial light pollution of airports, streets, and commercial services is high, while dark areas include farmland and rivers. (3) The light pollution patterns of four cities decreased away from the urban core and the total light pollution is highly related to the economic development. Our findings confirm that Luojia 1-01 can be effectively used to investigate artificial light pollution. Some limitations of Luojia 1-01, including its spectral range, radiometric calibration and the effects of clouds and moonlight, should be researched in future studies.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1424-8220 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 1997  
Permanent link to this record
 

 
Author Yao, Q.; Wang, H.; Uttley, J.; Zhuang, X. url  doi
openurl 
  Title Illuminance Reconstruction of Road Lighting in Urban Areas for Efficient and Healthy Lighting Performance Evaluation Type Journal Article
  Year 2018 Publication Applied Sciences Abbreviated Journal Applied Sciences  
  Volume 8 Issue (down) 9 Pages 1646  
  Keywords Instrumentation; Lighting; Planning  
  Abstract Big lighting data are required for evaluation of lighting performance and impacts on human beings, environment, and ecology for smart urban lighting. However, traditional approaches of measuring road lighting cannot achieve this aim. We propose a rule-of-thumb model approach based on some feature points to reconstruct road lighting in urban areas. We validated the reconstructed illuminance with both software simulated and real road lighting scenes, and the average error is between 6 and 19%. This precision is acceptable in practical applications. Using this approach, we reconstructed the illuminance of three real road lighting environments in a block and further estimated the mesopic luminance and melanopic illuminance performance. In the future, by virtue of Geographic Information System technology, the approach may provide big lighting data for evaluation and analysis, and help build smarter urban lighting.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2076-3417 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 2003  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: