toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Depner, C.M.; Melanson, E.L.; McHill, A.W.; Wright, K.P.J. url  doi
openurl 
  Title Mistimed food intake and sleep alters 24-hour time-of-day patterns of the human plasma proteome Type Journal Article
  Year 2018 Publication Proceedings of the National Academy of Sciences of the United States of America Abbreviated Journal Proc Natl Acad Sci U S A  
  Volume 115 Issue (down) 23 Pages E5390-E5399  
  Keywords Human Health  
  Abstract Proteomics holds great promise for understanding human physiology, developing health biomarkers, and precision medicine. However, how much the plasma proteome varies with time of day and is regulated by the master circadian suprachiasmatic nucleus brain clock, assessed here by the melatonin rhythm, is largely unknown. Here, we assessed 24-h time-of-day patterns of human plasma proteins in six healthy men during daytime food intake and nighttime sleep in phase with the endogenous circadian clock (i.e., circadian alignment) versus daytime sleep and nighttime food intake out of phase with the endogenous circadian clock (i.e., circadian misalignment induced by simulated nightshift work). We identified 24-h time-of-day patterns in 573 of 1,129 proteins analyzed, with 30 proteins showing strong regulation by the circadian cycle. Relative to circadian alignment, the average abundance and/or 24-h time-of-day patterns of 127 proteins were altered during circadian misalignment. Altered proteins were associated with biological pathways involved in immune function, metabolism, and cancer. Of the 30 circadian-regulated proteins, the majority peaked between 1400 hours and 2100 hours, and these 30 proteins were associated with basic pathways involved in extracellular matrix organization, tyrosine kinase signaling, and signaling by receptor tyrosine-protein kinase erbB-2. Furthermore, circadian misalignment altered multiple proteins known to regulate glucose homeostasis and/or energy metabolism, with implications for altered metabolic physiology. Our findings demonstrate the circadian clock, the behavioral wake-sleep/food intake-fasting cycle, and interactions between these processes regulate 24-h time-of-day patterns of human plasma proteins and help identify mechanisms of circadian misalignment that may contribute to metabolic dysregulation.  
  Address Division of Endocrinology, Metabolism, and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO 80045  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0027-8424 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:29784788 Approved no  
  Call Number GFZ @ kyba @ Serial 1916  
Permanent link to this record
 

 
Author Owens, A.C.S.; Lewis, S.M. url  doi
openurl 
  Title The impact of artificial light at night on nocturnal insects: A review and synthesis Type Journal Article
  Year 2018 Publication Ecology and Evolution Abbreviated Journal Ecol Evol  
  Volume 8 Issue (down) 22 Pages 11337-11358  
  Keywords Animals; Review  
  Abstract In recent decades, advances in lighting technology have precipitated exponential increases in night sky brightness worldwide, raising concerns in the scientific community about the impact of artificial light at night (ALAN) on crepuscular and nocturnal biodiversity. Long-term records show that insect abundance has declined significantly over this time, with worrying implications for terrestrial ecosystems. The majority of investigations into the vulnerability of nocturnal insects to artificial light have focused on the flight-to-light behavior exhibited by select insect families. However, ALAN can affect insects in other ways as well. This review proposes five categories of ALAN impact on nocturnal insects, highlighting past research and identifying key knowledge gaps. We conclude with a summary of relevant literature on bioluminescent fireflies, which emphasizes the unique vulnerability of terrestrial light-based communication systems to artificial illumination. Comprehensive understanding of the ecological impacts of ALAN on diverse nocturnal insect taxa will enable researchers to seek out methods whereby fireflies, moths, and other essential members of the nocturnal ecosystem can coexist with humans on an increasingly urbanized planet.  
  Address Department of Biology Tufts University Medford Massachusetts  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2045-7758 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:30519447; PMCID:PMC6262936 Approved no  
  Call Number GFZ @ kyba @ Serial 2132  
Permanent link to this record
 

 
Author Zachary M. Cravens, Veronica A. Brown, Timothy J. Divoll, Justin G. Boyles url  doi
openurl 
  Title Illuminating prey selection in an insectivorous bat community, exposed to artificial light at night Type Journal Article
  Year 2018 Publication Journal of Applied Ecology Abbreviated Journal  
  Volume 55 Issue (down) 2 Pages 705-713  
  Keywords Animals; Ecology  
  Abstract 1.Light pollution has been increasing around the globe and threatens to disturb natural rhythms of wildlife species. Artificial light impacts the behaviour of insectivorous bats in numerous ways, including foraging behaviour, which may in turn lead to altered prey selection.

2.In a manipulative field experiment, we collected faecal samples from six species of insectivorous bats in naturally dark and artificially lit conditions, and identified prey items using molecular methods to investigate effects of light pollution on prey selection.

3.Proportional differences of identified prey were not consistent and appeared to be species specific. Red bats, little brown bats, and gray bats exhibited expected increases in moths at lit sites. Beetle-specialist big brown bats had a sizeable increase in beetle consumption around lights, while tri-colored bats and evening bats showed little change in moth consumption between experimental conditions. Dietary overlap was high between experimental conditions within each species, and dietary breadth only changed significantly between experimental conditions in one species, the little brown bat.

4.Policy implications. Our results, building on others, demonstrate that bat-insect interactions may be more nuanced than the common assertion that moth consumption increases around lights. They highlight the need for a greater mechanistic understanding of bat-light interactions to predict which species will be most affected by light pollution. Given differences in bat and insect communities, we advocate biologists, land stewards, and civil planners work collaboratively to determine lighting solutions that minimize changes in foraging behaviour of species in the local bat community. Such efforts may allow stakeholders to more effectively craft management strategies to minimize unnatural shifts in prey selection caused by artificial lights.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number LoNNe @ kyba @ Serial 1783  
Permanent link to this record
 

 
Author Zeng, X.; Shao, X.; Qiu, S.; Ma, L.; Gao, C.; Li, C. url  doi
openurl 
  Title Stability Monitoring of the VIIRS Day/Night Band over Dome C with a Lunar Irradiance Model and BRDF Correction Type Journal Article
  Year 2018 Publication Remote Sensing Abbreviated Journal Remote Sensing  
  Volume 10 Issue (down) 2 Pages 189  
  Keywords Instrumentation; Remote Sensing  
  Abstract The unique feature of the Visible Infrared Imager Radiometer Suite (VIIRS) day/night band (DNB) is its ability to take quantitative measurements of low-light scenes at night. In order to monitor the stability of the high gain stage (HGS) of the DNB, nighttime observations over the Dome C site under moonlight are analyzed in this study. The Miller and Turner 2009 (MT2009) lunar irradiance model has been used to simulate lunar illumination over Dome C. However, the MT2009 model does not differentiate the waxing and waning lunar phases. In this paper, the MT-SWC (SeaWiFS Corrected) lunar irradiance model differentiating the waxing and waning lunar phases is derived by correcting the MT2009 model using lunar observations made by the Sea-Viewing Wide Field-of-View Sensor (SeaWiFS). In addition, a top of atmosphere (TOA) bi-directional reflectance distribution function (BRDF) model during nighttime over Dome C is developed to remove the angular dependence from the nighttime TOA reflectance. The long-term stability monitoring of the DNB high-gain stage (HGS) reveals a lower reflectance factor in 2012 in comparison to the following years, which can be traced back to the change in relative spectral response (RSR) of National Oceanic & Atmospheric Administration’s (NOAA’s) Interface Data Processing Segment (IDPS) VIIRS DNB in April 2013. It also shows the radiometric stability of DNB data, with long-term stability of less than 1.58% over the periods from 2013 to 2016. This method can be used to monitor the radiometric stability of other low-light observing sensors using vicarious calibration sites under moonlight illumination.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2072-4292 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number LoNNe @ kyba @ Serial 1805  
Permanent link to this record
 

 
Author Lim, H.; Ngarambe, J.; Kim, J.; Kim, G. url  doi
openurl 
  Title The Reality of Light Pollution: A Field Survey for the Determination of Lighting Environmental Management Zones in South Korea Type Journal Article
  Year 2018 Publication Sustainability Abbreviated Journal Sustainability  
  Volume 10 Issue (down) 2 Pages 374  
  Keywords Planning; Regulation; Energy  
  Abstract Light pollution has been receiving increased attention worldwide. Scientific research has provided convincing evidence that ties artificial lighting to health-related issues. Consequently, the involved parties are now leaned towards the implementation of regulations to help limit the use of artificial lighting. Many countries, together with international organizations, have embarked on setting standards and regulations aimed at halting the excessive and improper usage of artificial lighting, there-by eradicating light pollution and its effects. In Korea, outdoor lighting at night is a common phenomenon. Moreover, as the economic development grows even further, the use of artificial lighting is expected to increase making Korea vulnerable to the adverse effects of artificial lighting. In this study, we discuss the issue of light pollution based on field measurements conducted in Seoul, South Korea. The measurements were undertaken to broaden the understanding and assessment of light pollution. During the investigation, we noted that the most severe forms of light pollution were found in developed urban and densely commercialized areas. Currently, there are ongoing light pollution measurement projects around the entire Korea. It would be informative to see how the rest of South Korea compares to the Capital, Seoul in terms of light pollution levels.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2071-1050 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number LoNNe @ kyba @ Serial 1808  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: