toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Wang, J., Zhang, J., Gong, L., Li, Q., Zhou, D. url  doi
openurl 
  Title Seismic Indirect Economic Loss Assessment and Recovery Evaluation Using Night-time Light Images – Application for Wenchuan Earthquake Type Journal Article
  Year 2018 Publication Natural Hazards and Earth System Sciences Abbreviated Journal  
  Volume In press Issue Pages  
  Keywords (down) Remote Sensing; Economics  
  Abstract Seismic indirect economic loss not only has a major impact on regional economic recovery policies, but also related to the economic assistance at the national level. Due to the Cross-regional economic activities and the difficulty of obtaining data, it's difficult that the indirect economic loss survey covers all economic activities. However, night-time light in an area can reflect the economic activity of the region. This paper focuses on the indirect economic losses caused by the Wenchuan earthquake in 2008 and evaluated the progress of restoration and reconstruction based on night-time light Images. First, the functional relationship between GDP and night-time light parameters was established based on the pre-earthquake data. Next, the indirect loss of the earthquake was evaluated by the night-time light attenuation in the disaster area after the earthquake. Then, the capacity recovery, which is characterized by the brightness recovery process of the light area, was evaluated. Lastly, the process of light expansion in the disaster area was analyzed to evaluate the economic expansion speed and efficiency.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number NC @ ehyde3 @ Serial 2064  
Permanent link to this record
 

 
Author Guetté, A.; Godet, L.; Juigner, M.; Robin, M. url  doi
openurl 
  Title Worldwide increase in Artificial Light At Night around protected areas and within biodiversity hotspots Type Journal Article
  Year 2018 Publication Biological Conservation Abbreviated Journal Biological Conservation  
  Volume 223 Issue Pages 97-103  
  Keywords (down) Remote Sensing; Ecology; Conservation  
  Abstract Artificial Light At Night (ALAN) has several adverse impacts on biodiversity, and it has been recently used as a proxy to monitor human encroachment on landscapes at large spatial scales. The extent to which ALAN affects protected areas (PAs) and biodiversity hotspots (BHs) remains however untested at large spatial scales. We used this proxy to assess the spatial and temporal trends in the anthropization at a global scale within and around PAs and BHs. We found that ALAN is low and stable over time within PAs, but is the highest in a first outer belt (<25 km) around PAs, and tends to increase in a second outer belt (25–75 km). In the meantime, ALAN is higher within BHs than outside, and is even the highest and increasing over time in an inner belt, close to their periphery. Our results suggest that although PAs are creating safety zones in terms of ALAN, they tend to be more and more isolated from each other by a concentric human encroachment. In contrast, BHs are submitted to an increasing human pressure, especially in their inner periphery. Overall, we suggest integrating ALAN in large-scale conservation policies.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0006-3207 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 1890  
Permanent link to this record
 

 
Author Neri, L.; Coscieme, L.; Giannetti, B.F.; Pulselli, F.M. url  doi
openurl 
  Title Imputing missing data in non-renewable empower time series from night-time lights observations Type Journal Article
  Year 2018 Publication Ecological Indicators Abbreviated Journal Ecological Indicators  
  Volume 84 Issue Pages 106-118  
  Keywords (down) Remote Sensing  
  Abstract Emergy is an environmental accounting tool, with a specific set of indicators, that proved to be highly informative for sustainability assessment of national economies. The empower, defined as emergy per unit time, is a measure of the overall flow of resources used by a system in order to support its functioning. Continuous time-series of empower are not available for most of the world countries, due to the large amount of data needed for its calculation year by year. In this paper, we aim at filling this gap by means of a model that facilitates reconstruction of continuous time series of the non-renewable component of empower for a set of 57 countries of the world from 1995 to 2012. The reconstruction is based on a 3 year global emergy dataset and on the acknowledged relationships between the use of non-renewables, satellite observed artificial lights emitted at night, and Gross Domestic Product. Results show that this method provides accurate estimations of non-renewable empower at the country scale. The estimation model can be extended onward and backward in time and replicated for more countries, also using higher-resolution satellite imageries newly available. Besides representing an important advancement in emergy theory, this information is helpful for monitoring progresses toward Sustainable Development and energy use international goals.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1470160X ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number LoNNe @ kyba @ Serial 1706  
Permanent link to this record
 

 
Author Zheng, Q.; Jiang, R.; Wang, K.; Huang, L.; Ye, Z.; Gan, M.; Ji, B. url  doi
openurl 
  Title Monitoring the trajectory of urban nighttime light hotspots using a Gaussian volume model Type Journal Article
  Year 2018 Publication International Journal of Applied Earth Observation and Geoinformation Abbreviated Journal International Journal of Applied Earth Observation and Geoinformation  
  Volume 65 Issue Pages 24-34  
  Keywords (down) Remote Sensing  
  Abstract Urban nighttime light hotspot is an ideal representation of the spatial heterogeneity of human activities within a city, which is sensitive to regional urban expansion pattern. However, most of previous studies related to nighttime light imageries focused on extracting urban extent, leaving the spatial variation of radiance intensity insufficiently explored. With the help of global radiance calibrated DMSP-OLS datasets (NTLgrc), we proposed an innovative framework to explore the spatio-temporal trajectory of polycentric urban nighttime light hotspots. Firstly, NTLgrc was inter-annually calibrated to improve the consistency. Secondly, multi-resolution segmentation and region-growing SVM classification were employed to remove blooming effect and to extract potential clusters. At last, the urban hotspots were identified by a Gaussian volume model, and the resulting parameters were used to quantitatively depict hotspot features (i.e., intensity, morphology and centroid dynamics). The result shows that our framework successfully captures hotspots in polycentric urban area, whose Ra2 are over 0.9. Meanwhile, the spatio-temporal dynamics of the hotspot features intuitively reveal the impact of the regional urban growth pattern and planning strategies on human activities. Compared to previous studies, our framework is more robust and offers an effective way to describe hotspot pattern. Also, it provides a more comprehensive and spatial-explicit understanding regarding the interaction between urbanization pattern and human activities. Our findings are expected to be beneficial to governors in term of sustainable urban planning and decision making.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0303-2434 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number LoNNe @ kyba @ Serial 1771  
Permanent link to this record
 

 
Author Bagan, H.; Borjigin, H.; Yamagata, Y. url  doi
openurl 
  Title Assessing nighttime lights for mapping the urban areas of 50 cities across the globe Type Journal Article
  Year 2018 Publication Environment and Planning B: Urban Analytics and City Science Abbreviated Journal Environment and Planning B: Urban Analytics and City Science  
  Volume Issue Pages 2399808317752926  
  Keywords (down) Remote Sensing  
  Abstract Nighttime data from the Defense Meteorological Satellite Program Operational Linescan System have been widely used to map urban/built-up areas (hereafter referred to as “built-up area”), but to date there has not been a geographically comprehensive evaluation of the effectiveness of using nighttime lights data to map urban areas. We created accurate, convenient, and scalable grid cells based on Defense Meteorological Satellite Program/Operational Linescan System nighttime light pixels. We then calculated the density of Landsat-derived built-up areas within each grid cell. We explored the relationship between Defense Meteorological Satellite Program/Operational Linescan System nighttime lights data and the density of built-up areas to assess the utility of nighttime lights for mapping urban areas in 50 cities across the globe. We found that the brightness of nighttime lights was only in moderate agreement with the density of built-up areas; moreover, correlations between nighttime lights and Landsat-derived built-up areas were weak. Even in relatively sparsely populated urban regions (where the density of the built-up area is less than 20%), the highest correlation coefficient (R2) was only 0.4. Furthermore, nighttime lights showed lighted areas that extended beyond the area of large cities, and nighttime lights reduced the area of small cities. The results suggest that it is difficult to use the regression model to calibrate the Defense Meteorological Satellite Program/Operational Linescan System nighttime lights to fit urban built up areas.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2399-8083 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number LoNNe @ kyba @; GFZ @ kyba @ Serial 1795  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: