|   | 
Details
   web
Records
Author Scheuermaier, K.; Munch, M.; Ronda, J.M.; Duffy, J.F.
Title Improved cognitive morning performance in healthy older adults following blue-enriched light exposure on the previous evening Type Journal Article
Year 2018 Publication Behavioural Brain Research Abbreviated Journal Behav Brain Res
Volume 348 Issue Pages 267-275
Keywords (down) Human Health
Abstract OBJECTIVES: Exposure to light can have acute alerting and circadian phase-shifting effects. This study investigated the effects of evening exposure to blue-enriched polychromatic white (BEL) vs. polychromatic white light (WL) on sleep inertia dissipation the following morning in older adults. METHODS: Ten healthy older adults (average age=63.3 yrs; 6F) participated in a 13-day study comprising three baseline days, an initial circadian phase assessment, four days with 2-h evening light exposures, a post light exposure circadian phase assessment and three recovery days. Participants were randomized to either BEL or WL of the same irradiance for the four evening light exposures. On the next mornings at 2, 12, 22 and 32min after each wake time, the participants completed a 90-s digit-symbol substitution test (DSST) to assess working memory, and objective alertness was assessed using a wake EEG recording. DSST and power density from the wake EEG recordings were compared between the two groups. RESULTS: DSST performance improved with time awake (p<0.0001) and across study days in both light exposure groups (p<0.0001). There was no main effect of group, although we observed a significant day x group interaction (p=0.0004), whereby participants exposed to BEL performed significantly better on the first two mornings after light exposures than participants in WL (post-hoc, p<0.05). On those days, the BEL group showed higher EEG activity in some of the frequency bins in the sigma and beta range (p<0.05) on the wake EEG. CONCLUSION: Exposure to blue-enriched white light in the evening significantly improved DSST performance the following morning when compared to polychromatic white light. This was associated with a higher level of objective alertness on the wake EEG, but not with changes in sleep or circadian timing.
Address Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Boston, MA, United States; Division of Sleep Medicine, Harvard Medical School, Boston, MA, United States
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0166-4328 ISBN Medium
Area Expedition Conference
Notes PMID:29684473 Approved no
Call Number GFZ @ kyba @ Serial 1899
Permanent link to this record
 

 
Author Rahman, S.A.; St Hilaire, M.A.; Gronfier, C.; Chang, A.-M.; Santhi, N.; Czeisler, C.A.; Klerman, E.B.; Lockley, S.W.
Title Functional decoupling of melatonin suppression and circadian phase resetting in humans Type Journal Article
Year 2018 Publication The Journal of Physiology Abbreviated Journal J Physiol
Volume 596 Issue 11 Pages 2147-2157
Keywords (down) Human Health
Abstract KEY POINTS: There is assumed to be a monotonic association between melatonin suppression and circadian phase resetting induced by light exposure. We tested the association between melatonin suppression and phase resetting in humans. Sixteen young healthy participants received nocturnal bright light ( approximately 9500 lux) exposure of continuous or intermittent patterns, and different durations ranging from 12 min to 6.5 h. Intermittent exposure patterns showed significant phase shifts with disproportionately less melatonin suppression. Each and every bright light stimulus in an intermittent exposure pattern induced a similar degree of melatonin suppression, but did not appear to cause an equal magnitude of phase shift. These results suggest that phase shifts and melatonin suppression are functionally independent such that one cannot be used as a proxy measure of the other. ABSTRACT: Continuous experimental light exposures show that, in general, the conditions that produce greater melatonin suppression also produce greater phase shift, leading to the assumption that one can be used as a proxy for the other. We tested this association in 16 healthy individuals who participated in a 9-day inpatient protocol by assessing melatonin suppression and phase resetting in response to a nocturnal light exposure (LE) of different patterns: (i) dim-light control (<3 lux; n = 6) or (ii) two 12-min intermittent bright light pulses (IBL) separated by 36 min of darkness ( approximately 9500 lux; n = 10). We compared these results with historical data from additional LE patterns: (i) dim-light control (<3 lux; n = 11); (ii) single continuous bright light exposure of 12 min (n = 9), 1.0 h (n = 10) or 6.5 h (n = 6); or (iii) an IBL light pattern consisting of six 15-min pulses with 1.0 h dim-light recovery intervals between them during a total of 6.5 h (n = 7). All light exposure groups had significantly greater phase-delay shifts than the dim-light control condition (P < 0.0001). While a monotonic association between melatonin suppression and circadian phase shift was observed, intermittent exposure patterns showed significant phase shifts with disproportionately less melatonin suppression. Each and every IBL stimulus induced a similar degree of melatonin suppression, but did not appear to cause an equal magnitude of phase shift. These results suggest unique specificities in how light-induced phase shifts and melatonin suppression are mediated such that one cannot be used as a proxy measure of the other.
Address Division of Sleep Medicine, Harvard Medical School, Boston, MA, USA
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-3751 ISBN Medium
Area Expedition Conference
Notes PMID:29707782 Approved no
Call Number GFZ @ kyba @ Serial 1887
Permanent link to this record
 

 
Author Nelson, R.J.; Chbeir, S.
Title Dark matters: effects of light at night on metabolism Type Journal Article
Year 2018 Publication The Proceedings of the Nutrition Society Abbreviated Journal Proc Nutr Soc
Volume 77 Issue 3 Pages 223-229
Keywords (down) Human Health
Abstract Life on earth has evolved during the past several billion years under relatively bright days and dark night conditions. The wide-spread adoption of electric lights during the past century exposed animals, both human and non-human, to significant light at night for the first time in their evolutionary history. Endogenous circadian clocks depend on light to entrain to the external daily environment and seasonal rhythms depend on clear nightly melatonin signals to assess time of year. Thus, light at night can derange temporal adaptations. Indeed, disruption of naturally evolved light-dark cycles results in several physiological and behavioural changes with potentially serious implications for physiology, behaviour and mood. In this review, data from night-shift workers on their elevated risk for metabolic disorders, as well as data from animal studies will be discussed. Night-shift workers are predisposed to obesity and dysregulated metabolism that may result from disrupted circadian rhythms. Although studies in human subjects are correlative, animal studies have revealed several mechanisms through which light at night may exert its effects on metabolism by disrupting circadian rhythms that are associated with inflammation, both in the brain and in the periphery. Disruption of the typical timing of food intake is a key effect of light at night and subsequent metabolic dysregulation. Strategies to avoid the effects of light at night on body mass dysregulation should be pursued.
Address Department of Neuroscience,The Ohio State University,Columbus, OH 43210,USA
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0029-6651 ISBN Medium
Area Expedition Conference
Notes PMID:29747703 Approved no
Call Number GFZ @ kyba @ Serial 1896
Permanent link to this record
 

 
Author Rybnikova, N.; Portnov, B.A.
Title Population-level study links short-wavelength nighttime illumination with breast cancer incidence in a major metropolitan area Type Journal Article
Year 2018 Publication Chronobiology International Abbreviated Journal Chronobiol Int
Volume 35 Issue 9 Pages 1198-1208
Keywords (down) Human Health
Abstract Several population-level studies revealed a positive association between breast cancer (BC) incidence and artificial light at night (ALAN) exposure. However, the effect of short-wavelength illumination, implicated by laboratory research and small-scale cohort studies as the main driving force behind BC-ALAN association, has not been supported by any population-level study carried out to date. We investigated a possible link between BC and ALAN of different subspectra using a multi-spectral year-2011 satellite image, taken from the International Space Station, and superimposing it with year-2013 BC incidence data available for the Great Haifa Metropolitan Area in Israel. The analysis was performed using both ordinary least square (OLS) and spatial dependency models, controlling for socioeconomic and locational attributes of the study area. The study revealed strong associations between BC and blue and green light subspectra (B = 0.336 +/- 0.001 and B = 0.335 +/- 0.002, respectively; p < 0.01), compared to a somewhat weaker effect for the red subspectrum (B = 0.056 +/- 0.001; p < 0.01). However, spatial dependency models, controlling for spatial autocorrelation of regression residuals, confirmed only a positive association between BC incidence and short-wavelength (blue) ALAN subspectrum (z = 2.462, p < 0.05) while reporting insignificant associations between BC and either green (z = 1.425, p > 0.1) or red (z = -0.604, p > 0.1) subspectra. The obtained result is in line with the results of laboratory- and small-scale cohort studies linking short-wavelength nighttime illumination with circadian disruption and melatonin suppression. The detected effect of blue lights on BC incidence may help to develop informed illumination policies aimed at minimizing the adverse health effects of ALAN exposure on human health.
Address a Department of Natural Resources and Environmental Management , University of Haifa , Haifa , Israel
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0742-0528 ISBN Medium
Area Expedition Conference
Notes PMID:29768068 Approved no
Call Number GFZ @ kyba @ Serial 1906
Permanent link to this record
 

 
Author Depner, C.M.; Melanson, E.L.; McHill, A.W.; Wright, K.P.J.
Title Mistimed food intake and sleep alters 24-hour time-of-day patterns of the human plasma proteome Type Journal Article
Year 2018 Publication Proceedings of the National Academy of Sciences of the United States of America Abbreviated Journal Proc Natl Acad Sci U S A
Volume 115 Issue 23 Pages E5390-E5399
Keywords (down) Human Health
Abstract Proteomics holds great promise for understanding human physiology, developing health biomarkers, and precision medicine. However, how much the plasma proteome varies with time of day and is regulated by the master circadian suprachiasmatic nucleus brain clock, assessed here by the melatonin rhythm, is largely unknown. Here, we assessed 24-h time-of-day patterns of human plasma proteins in six healthy men during daytime food intake and nighttime sleep in phase with the endogenous circadian clock (i.e., circadian alignment) versus daytime sleep and nighttime food intake out of phase with the endogenous circadian clock (i.e., circadian misalignment induced by simulated nightshift work). We identified 24-h time-of-day patterns in 573 of 1,129 proteins analyzed, with 30 proteins showing strong regulation by the circadian cycle. Relative to circadian alignment, the average abundance and/or 24-h time-of-day patterns of 127 proteins were altered during circadian misalignment. Altered proteins were associated with biological pathways involved in immune function, metabolism, and cancer. Of the 30 circadian-regulated proteins, the majority peaked between 1400 hours and 2100 hours, and these 30 proteins were associated with basic pathways involved in extracellular matrix organization, tyrosine kinase signaling, and signaling by receptor tyrosine-protein kinase erbB-2. Furthermore, circadian misalignment altered multiple proteins known to regulate glucose homeostasis and/or energy metabolism, with implications for altered metabolic physiology. Our findings demonstrate the circadian clock, the behavioral wake-sleep/food intake-fasting cycle, and interactions between these processes regulate 24-h time-of-day patterns of human plasma proteins and help identify mechanisms of circadian misalignment that may contribute to metabolic dysregulation.
Address Division of Endocrinology, Metabolism, and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0027-8424 ISBN Medium
Area Expedition Conference
Notes PMID:29784788 Approved no
Call Number GFZ @ kyba @ Serial 1916
Permanent link to this record