toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Navas Gonzalez, F.J.; Jordana Vidal, J.; Pizarro Inostroza, G.; Arando Arbulu, A.; Delgado Bermejo, J.V. url  doi
openurl 
  Title Can Donkey Behavior and Cognition Be Used to Trace Back, Explain, or Forecast Moon Cycle and Weather Events? Type Journal Article
  Year 2018 Publication Animals : an Open Access Journal From MDPI Abbreviated Journal Animals (Basel)  
  Volume 8 Issue 11 Pages  
  Keywords (down) Moonlight; Animals  
  Abstract Donkeys have been reported to be highly sensitive to environmental changes. Their 8900-8400-year-old evolution process made them interact with diverse environmental situations that were very distant from their harsh origins. These changing situations not only affect donkeys' short-term behavior but may also determine their long-term cognitive skills from birth. Thus, animal behavior becomes a useful tool to obtain past, present or predict information from the environmental situation of a particular area. We performed an operant conditioning test on 300 donkeys to assess their response type, mood, response intensity, and learning capabilities, while we simultaneously registered 14 categorical environmental factors. We quantified the effect power of such environmental factors on donkey behavior and cognition. We used principal component analysis (CATPCA) to reduce the number of factors affecting each behavioral variable and built categorical regression (CATREG) equations to model for the effects of potential factor combinations. Effect power ranged from 7.9% for the birth season on learning (p < 0.05) to 38.8% for birth moon phase on mood (p < 0.001). CATPCA suggests the percentage of variance explained by a four-dimension-model (comprising the dimensions of response type, mood, response intensity and learning capabilities), is 75.9%. CATREG suggests environmental predictors explain 28.8% of the variability of response type, 37.0% of mood, and 37.5% of response intensity, and learning capabilities.  
  Address The Worldwide Donkey Breeds Project, Faculty of Veterinary Sciences, University of Cordoba, 14071 Cordoba, Spain. juanviagr218@gmail.com  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2076-2615 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:30463193 Approved no  
  Call Number GFZ @ kyba @ Serial 2083  
Permanent link to this record
 

 
Author Van Tatenhove, A.; Fayet, A.; Watanuki, Y.; Yoda, K.; Shoji, A. url  openurl
  Title Streaked Shearwater Calonectris leucomelas moonlight avoidance in response to low aerial predation pressure, and effects of wind speed and direction on colony attendance Type Journal Article
  Year 2018 Publication Marine Ornithology Abbreviated Journal  
  Volume 46 Issue Pages 177-185  
  Keywords (down) Moonlight  
  Abstract Many species of Procellaridae are nocturnal on their breeding grounds, exhibiting reduced activity during fuller moonlight, perhaps to avoid predation by predators that use the full moon to hunt after sunset. Among these nocturnal species, Streaked Shearwaters Calonectris leucomelas have high wing loading and have difficulty taking off—especially with unfavorable wind conditions—thus potentially exacerbating moonlight avoidance. Effects of moonlight and wind conditions on the colony activity of this species, however, is poorly understood. We investigated the phenomenon by counting the departure and arrival of birds, and measuring ambient light intensity, local wind speed, and local wind direction at a breeding colony of Streaked Shearwaters on Awashima Island, Japan. Moon phase and ambient light had no significant effect on the frequency of arrivals or departures. Frequency of departures decreased significantly with increasing wind speed, but no effect was seen on arrivals, and wind direction had no effect on arrivals or departures. Our results indicate that: (1) wind speed may play an important role in Streaked Shearwater takeoff from the colony, and (2) moonlight avoidance is a plastic trait that may diminish in large-bodied shearwaters when few diurnal aerial predators are present.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number NC @ ehyde3 @ Serial 2107  
Permanent link to this record
 

 
Author Kocifaj, M. url  doi
openurl 
  Title Towards a Comprehensive City Emission Function (CCEF) Type Journal Article
  Year 2018 Publication Journal of Quantitative Spectroscopy and Radiative Transfer Abbreviated Journal JQSRT  
  Volume 205 Issue Pages 253-266  
  Keywords (down) Lighting; Skyglow  
  Abstract The comprehensive city emission function (CCEF) is developed for a heterogeneous light-emitting or blocking urban environments, embracing any combination of input parameters that characterize linear dimensions in the system (size and distances between buildings or luminaires), properties of light-emitting elements (such as luminous building façades and street lighting), ground reflectance and total uplight-fraction, all of these defined for an arbitrarily sized 2D area. The analytical formula obtained is not restricted to a single model class as it can capture any specific light-emission feature for wide range of cities. The CCEF method is numerically fast in contrast to what can be expected of other probabilistic approaches that rely on repeated random sampling. Hence the present solution has great potential in light-pollution modeling and can be included in larger numerical models. Our theoretical findings promise great progress in light-pollution modeling as this is the first time an analytical solution to city emission function (CEF) has been developed that depends on statistical mean size and height of city buildings, inter-building separation, prevailing heights of light fixtures, lighting density, and other factors such as e.g. luminaire light output and light distribution, including the amount of uplight, and representative city size. The model is validated for sensitivity and specificity pertinent to combinations of input parameters in order to test its behavior under various conditions, including those that can occur in complex urban environments. It is demonstrated that the solution model succeeds in reproducing a light emission peak at some elevated zenith angles and is consistent with reduced rather than enhanced emission in directions nearly parallel to the ground.  
  Address  
  Corporate Author Thesis  
  Publisher ScienceDirect Place of Publication Editor  
  Language English Summary Language English Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number LoNNe @ kyba @ Serial 1757  
Permanent link to this record
 

 
Author Rea, M.; Skinner, N.; Bullough, J. url  doi
openurl 
  Title A Novel Barricade Warning Light System Using Wireless Communications Type Journal Article
  Year 2018 Publication SAE Technical Paper 2018-01-5036 Abbreviated Journal  
  Volume In press Issue Pages  
  Keywords (down) Lighting; Safety  
  Abstract Workers in construction and transportation sectors are at increased risk for work-related injuries and fatalities by nearby traffic. Barricade-mounted warning lights meeting current specifications do not always provide consistent and adequate visual guidance to drivers and can contribute to glare and reduced safety. Through an implementation of sensors and wireless communications, a novel, intelligent set of warning lights and a tablet-based interface were developed. The lights modulate between 100% and 10% of maximum intensity rather than between 100% and off in order to improve visual guidance and adjust their overall intensity based on ambient conditions. The lights can be synchronized or operated in sequential flash patterns at any frequency between 1 and 4 Hz, and sequential patterns automatically update based on global positioning satellite (GPS) locations displayed in the control interface. A successful field demonstration of the system verified that its functions were viewed favorably by transportation safety personnel.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number NC @ ehyde3 @ Serial 2117  
Permanent link to this record
 

 
Author Vaaja, M. T., Kurkela, M., Maksimainen, M., Virtanen, J., Kukko, A., Lehtola, V. V., Hyyppä, J., & Hyyppä, H. url  doi
openurl 
  Title MOBILE MAPPING OF NIGHT-TIME ROAD ENVIRONMENT LIGHTING CONDITIONS Type Journal Article
  Year 2018 Publication The Photogrammetric Journal of Finland Abbreviated Journal  
  Volume 26 Issue 1 Pages  
  Keywords (down) Lighting; Remote Sensing  
  Abstract The measurement of 3D geometry for road environments is one of the main applications of mobile mapping systems (MMS). We present mobile mapping applied to a night-time road environment. We integrate the measurement of luminances into a georeferenced 3D point cloud. The luminance measurement and the 3D point cloud acquired with an MMS are used in assessing road environment lighting conditions. Luminance (cd/m2) was measured with a luminance-calibrated panoramic camera system, and point cloud was produced by laser scanners. The relative orientation between the GNSS, IMU, camera, and laser scanner sensors was solved in order to

integrate the data sets into the same coordinate system. Hence, the georeferenced luminance values are transferable into geographic information systems (GIS). The method provides promising results for future road lighting assessment. In addition, this article demonstrates the night-time mobile mapping principle applied to a road section in Helsinki, Finland. Finally, we discuss the

future applications of mobile-mapped luminance point clouds.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number IDA @ intern @ Serial 2650  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: