|   | 
Details
   web
Records
Author Grubisic, M.; Van Grunsven, R.H.A.; Kyba, C.C.M.; Manfrin, A.; Hölker, F.
Title Insect declines and agroecosystems: does light pollution matter? Type Journal Article
Year 2018 Publication Annals of Applied Biology Abbreviated Journal Ann. of Appl. Biol.
Volume 173 Issue 1 Pages 180-189
Keywords (up) Animals; Ecology; Review
Abstract Drastic declines in insect populations, ‘Ecological Armageddon’, have recently gained increased attention in the scientific community, and are commonly considered to be the consequence of large‐scale factors such as land‐use changes, use of pesticides, climate change and habitat fragmentation. Artificial light at night (ALAN), a pervasive global change that strongly impacts insects, remains, however, infrequently recognised as a potential contributor to the observed declines. Here, we provide a summary of recent evidence of impacts of ALAN on insects and discuss how these impacts can drive declines in insect populations in light‐polluted areas. ALAN can increase overall environmental pressure on insect populations, and this is particularly important in agroecosystems where insect communities provide important ecosystem services (such as natural pest control, pollination, conservation of soil structure and fertility and nutrient cycling), and are already under considerable environmental pressure. We discuss how changes in insect populations driven by ALAN and ALAN itself may hinder these services to influence crop production and biodiversity in agricultural landscapes. Understanding the contribution of ALAN and other factors to the decline of insects is an important step towards mitigation and the recovery of the insect fauna in our landscapes. In future studies, the role of increased nocturnal illumination also needs to be examined as a possible causal factor of insect declines in the ongoing ‘Ecological Armageddon’, along with the more commonly examined factors. Given the large scale of agricultural land use and the potential of ALAN to indirectly and directly impact crop production and biodiversity, a better understanding of effects of ALAN in agroecosystems is urgently needed.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 1939
Permanent link to this record
 

 
Author Mammola, S.; Isaia, M.; Demonte, D.; Triolo, P.; Nervo, M.
Title Artificial lighting triggers the presence of urban spiders and their webs on historical buildings Type Journal Article
Year 2018 Publication Landscape and Urban Planning Abbreviated Journal Landscape and Urban Planning
Volume 180 Issue Pages 187-194
Keywords (up) Animals; Lighting
Abstract Different spider species living in the urban environment spin their webs on building facades. Due to air pollution, web aggregations entrap dirt particles over time, assuming a brownish-greyish colouration and thus determining an aesthetic impact on buildings and street furniture. In Europe, the most common species causing such an aesthetic nuisance is Brigittea civica (Lucas) (Dictynidae). In spite of the socio-economical relevance of the problem, the ecological factors driving the proliferation of this species in the urban environment are poorly described and the effectiveness of potential cleaning activities has never been discussed in scientific literature. Over one year, we studied the environmental drivers of B. civica webs in the arcades of the historical down-town district of Turin (NW-Italy). We selected a number of sampling plots on arcade ceilings and we estimated the density of B. civica webs by means of digital image analysis. In parallel, we collected information on a number of potential explanatory variables driving the arcade colonization, namely artificial lighting at night, substrate temperature, distance from the main artificial light sources and distance from the river. Regression analysis showed that the coverage of spider webs increased significantly at plots with higher light intensity, with a major effect related to the presence of historical lampposts with incandescent lamps rather than halogen lamps. We also detected a seasonal variation in the web coverage, with significant higher values in summer. Stemming from our results, we are able to suggest good practices for the containment of this phenomenon.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0169-2046 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 2002
Permanent link to this record
 

 
Author Dimovski, A.M.; Robert, K.A.
Title Artificial light pollution: Shifting spectral wavelengths to mitigate physiological and health consequences in a nocturnal marsupial mammal Type Journal Article
Year 2018 Publication Journal of Experimental Zoology. Part A, Ecological and Integrative Physiology Abbreviated Journal J Exp Zool A Ecol Integr Physiol
Volume 329 Issue 8-9 Pages 497-505
Keywords (up) Animals; Lighting
Abstract The focus of sustainable lighting tends to be on reduced CO2 emissions and cost savings, but not on the wider environmental effects. Ironically, the introduction of energy-efficient lighting, such as light emitting diodes (LEDs), may be having a great impact on the health of wildlife. These white LEDs are generated with a high content of short-wavelength 'blue' light. While light of any kind can suppress melatonin and the physiological processes it regulates, these short wavelengths are potent suppressors of melatonin. Here, we manipulated the spectral composition of LED lights and tested their capacity to mitigate the physiological and health consequences associated with their use. We experimentally investigated the impact of white LEDs (peak wavelength 448 nm; mean irradiance 2.87 W/m(2) ), long-wavelength shifted amber LEDs (peak wavelength 605 nm; mean irradiance 2.00 W/m(2) ), and no lighting (irradiance from sky glow < 0.37 x 10(-3) W/m(2) ), on melatonin production, lipid peroxidation, and circulating antioxidant capacity in the tammar wallaby (Macropus eugenii). Night-time melatonin and oxidative status were determined at baseline and again following 10 weeks exposure to light treatments. White LED exposed wallabies had significantly suppressed nocturnal melatonin compared to no light and amber LED exposed wallabies, while there was no difference in lipid peroxidation. Antioxidant capacity declined from baseline to week 10 under all treatments. These results provide further evidence that short-wavelength light at night is a potent suppressor of nocturnal melatonin. Importantly, we also illustrate that shifting the spectral output to longer wavelengths could mitigate these negative physiological impacts.
Address Department of Ecology, Environment and Evolution, La Trobe University, Melbourne, Australia
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2471-5638 ISBN Medium
Area Expedition Conference
Notes PMID:29722167 Approved no
Call Number GFZ @ kyba @ Serial 1888
Permanent link to this record
 

 
Author Rowse, E.G.; Harris, S.; Jones, G.
Title Effects of dimming light-emitting diode street lights on light-opportunistic and light-averse bats in suburban habitats Type Journal Article
Year 2018 Publication Royal Society Open Science Abbreviated Journal R. Soc. open sci.
Volume 5 Issue 6 Pages 180205
Keywords (up) Animals; Lighting
Abstract Emerging lighting technologies provide opportunities for reducing carbon footprints, and for biodiversity conservation. In addition to installing light-emitting diode street lights, many local authorities are also dimming street lights. This might benefit light-averse bat species by creating dark refuges for these bats to forage and commute in human-dominated habitats. We conducted a field experiment to determine how light intensity affects the activity of the light-opportunistic Pipistrellus pipistrellus and light-averse bats in the genus Myotis. We used four lighting levels controlled under a central management system at existing street lights in a suburban environment (0, 25, 50 and 100% of the original output). Higher light intensities (50 and 100% of original output) increased the activity of light-opportunistic species but reduced the activity of light-averse bats. Compared to the unlit treatment, the 25% lighting level did not significantly affect either P. pipistrellus or Myotis spp. Our results suggest that it is possible to achieve a light intensity that provides both economic and ecological benefits by providing sufficient light for human requirements while not deterring light-averse bats.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2054-5703 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 1931
Permanent link to this record
 

 
Author Shima, J.S.; Swearer, S.E.
Title Moonlight enhances growth in larval fish Type Journal Article
Year 2018 Publication Ecology Abbreviated Journal Ecology
Volume in press Issue Pages
Keywords (up) Animals; Moonlight
Abstract Moonlight mediates trophic interactions and shapes the evolution of life-history strategies for nocturnal organisms. Reproductive cycles and important life-history transitions for many marine organisms coincide with moon phases, but few studies consider the effects of moonlight on pelagic larvae at sea. We evaluated effects of moonlight on growth of pelagic larvae of a temperate reef fish using 'master chronologies' of larval growth constructed from age-independent daily increment widths recorded in otoliths of 321 individuals. We found that daily growth rates of fish larvae were enhanced by lunar illumination after controlling for the positive influence of temperature and the negative influence of cloud cover. Collectively, these results indicate that moonlight enhances growth rates of larval fish. This pattern is likely the result of moonlight's combined effects on foraging efficiency and suppression of diel migrations of mesopelagic predators, and has the potential to drive evolution of marine life histories. This article is protected by copyright. All rights reserved.
Address School of BioSciences, University of Melbourne, Melbourne, 3010, Australia
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0012-9658 ISBN Medium
Area Expedition Conference
Notes PMID:30422325 Approved no
Call Number GFZ @ kyba @ Serial 2059
Permanent link to this record