|   | 
Details
   web
Records
Author Landis, E.G.; Yang, V.; Brown, D.M.; Pardue, M.T.; Read, S.A.
Title Dim Light Exposure and Myopia in Children Type Journal Article
Year 2018 Publication Investigative Ophthalmology & Visual Science Abbreviated Journal Invest Ophthalmol Vis Sci
Volume 59 Issue 12 Pages 4804-4811
Keywords (up) Human Health
Abstract Purpose: Experimental myopia in animal models suggests that bright light can influence refractive error and prevent myopia. Additionally, animal research indicates activation of rod pathways and circadian rhythms may influence eye growth. In children, objective measures of personal light exposure, recorded by wearable light sensors, have been used to examine the effects of bright light exposure on myopia. The effect of time spent in a broad range of light intensities on childhood refractive development is not known. This study aims to evaluate dim light exposure in myopia. Methods: We reanalyzed previously published data to investigate differences in dim light exposure across myopic and nonmyopic children from the Role of Outdoor Activity in Myopia (ROAM) study in Queensland, Australia. The amount of time children spent in scotopic (<1-1 lux), mesopic (1-30 lux), indoor photopic (>30-1000 lux), and outdoor photopic (>1000 lux) light over both weekdays and weekends was measured with wearable light sensors. Results: We found significant differences in average daily light exposure between myopic and nonmyopic children. On weekends, myopic children received significantly less scotopic light (P = 0.024) and less outdoor photopic light than nonmyopic children (P < 0.001). In myopic children, more myopic refractive errors were correlated with increased time in mesopic light (R = -0.46, P = 0.002). Conclusions: These findings suggest that in addition to bright light exposure, rod pathways stimulated by dim light exposure could be important to human myopia development. Optimal strategies for preventing myopia with environmental light may include both dim and bright light exposure.
Address School of Optometry and Vision Science, Queensland University of Technology, Brisbane, Queensland, Australia
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0146-0404 ISBN Medium
Area Expedition Conference
Notes PMID:30347074; PMCID:PMC6181186 Approved no
Call Number NC @ ehyde3 @ Serial 2097
Permanent link to this record
 

 
Author McGlashan, E.M.; Poudel, G.R.; Vidafar, P.; Drummond, S.P.A.; Cain, S.W.
Title Imaging Individual Differences in the Response of the Human Suprachiasmatic Area to Light Type Journal Article
Year 2018 Publication Frontiers in Neurology Abbreviated Journal Front. Neurol.
Volume 9 Issue Pages
Keywords (up) Human Health
Abstract Circadian disruption is associated with poor health outcomes, including sleep and mood disorders. The suprachiasmatic nucleus (SCN) of the anterior hypothalamus acts as the master biological clock in mammals, regulating circadian rhythms throughout the body. The clock is synchronized to the day/night cycle via retinal light exposure. The BOLD-fMRI response of the human suprachiasmatic area to light has been shown to be greater in the night than in the day, consistent with the known sensitivity of the clock to light at night. Whether the BOLD-fMRI response of the human suprachiasmatic area to light is related to a functional outcome has not been demonstrated. In a pilot study (n = 10), we investigated suprachiasmatic area activation in response to light in a 30 s block-paradigm of lights on (100 lux) and lights off (< 1 lux) using the BOLD-fMRI response, compared to each participant's melatonin suppression response to moderate indoor light (100 lux). We found a significant correlation between activation in the suprachiasmatic area in response to light in the scanner and melatonin suppression, with increased melatonin suppression being associated with increased suprachiasmatic area activation in response to the same light level. These preliminary findings are a first step toward using imaging techniques to measure individual differences in circadian light sensitivity, a measure that may have clinical relevance in understanding vulnerability in disorders that are influenced by circadian disruption.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1664-2295 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number NC @ ehyde3 @ Serial 2114
Permanent link to this record
 

 
Author Tarquini, R.; Carbone, A.; Martinez, M.; Mazzoccoli, G.
Title Daylight saving time and circadian rhythms in the neuro-endocrine-immune system: impact on cardiovascular health Type Journal Article
Year 2018 Publication Internal and Emergency Medicine Abbreviated Journal Intern Emerg Med
Volume in press Issue Pages
Keywords (up) Human Health
Abstract
Address Division of Internal Medicine and Laboratory of Chronobiology, Department of Medical Sciences, Fondazione IRCCS “Casa Sollievo Della Sofferenza”, Cappuccini Avenue, San Giovanni Rotondo, Foggia, 71013, Italy. g.mazzoccoli@operapadrepio.it
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1828-0447 ISBN Medium
Area Expedition Conference
Notes PMID:30488154 Approved no
Call Number GFZ @ kyba @ Serial 2121
Permanent link to this record
 

 
Author Dunster, G.P.; de la Iglesia, L.; Ben-Hamo, M.; Nave, C.; Fleischer, J.G.; Panda, S.; de la Iglesia, H.O.
Title Sleepmore in Seattle: Later school start times are associated with more sleep and better performance in high school students Type Journal Article
Year 2018 Publication Science Advances Abbreviated Journal Sci. Adv.
Volume 4 Issue 12 Pages eaau6200
Keywords (up) Human Health
Abstract Most teenagers are chronically sleep deprived. One strategy proposed to lengthen adolescent sleep is to delay secondary school start times. This would allow students to wake up later without shifting their bedtime, which is biologically determined by the circadian clock, resulting in a net increase in sleep. So far, there is no objective quantitative data showing that a single intervention such as delaying the school start time significantly increases daily sleep. The Seattle School District delayed the secondary school start time by nearly an hour. We carried out a pre-/post-research study and show that there was an increase in the daily median sleep duration of 34 min, associated with a 4.5% increase in the median grades of the students and an improvement in attendance.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2375-2548 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 2131
Permanent link to this record
 

 
Author Lowden, A.; Lemos, N.; Gonçalves, B.; Öztürk, G.; Louzada, F.; Pedrazzoli, M.; Moreno, C.
Title Delayed Sleep in Winter Related to Natural Daylight Exposure among Arctic Day Workers Type Journal Article
Year 2018 Publication Clocks & Sleep Abbreviated Journal Clocks & Sleep
Volume 1 Issue 1 Pages 105-116
Keywords (up) Human Health
Abstract Natural daylight exposures in arctic regions vary substantially across seasons. Negative consequences have been observed in self-reports of sleep and daytime functions during the winter but have rarely been studied in detail. The focus of the present study set out to investigate sleep seasonality among indoor workers using objective and subjective measures. Sleep seasonality among daytime office workers (n = 32) in Kiruna (Sweden, 67.86° N, 20.23° E) was studied by comparing the same group of workers in a winter and summer week, including work and days off at the weekend, using actigraphs (motion loggers) and subjective ratings of alertness and mood. Actigraph analyses showed delayed sleep onset of 39 min in winter compared to the corresponding summer week (p < 0.0001) and shorter weekly sleep duration by 12 min (p = 0.0154). A delay of mid-sleep was present in winter at workdays (25 min, p < 0.0001) and more strongly delayed during days off (46 min, p < 0.0001). Sleepiness levels were higher in winter compared to summer (p < 0.05). Increased morning light exposure was associated with earlier mid-sleep (p < 0.001), while increased evening light exposure was associated with delay (p < 0.01). This study confirms earlier work that suggests that lack of natural daylight delays the sleep/wake cycle in a group of indoor workers, despite having access to electric lighting. Photic stimuli resulted in a general advanced sleep/wake rhythm during summer and increased alertness levels.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2624-5175 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 2137
Permanent link to this record