toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Wang, L.; Liu, X.; Liu, Z.; Wang, X.; Lei, C.; Zhu, F. url  doi
openurl 
  Title Members of the neuropeptide transcriptional network in Helicoverpa armigera and their expression in response to light stress Type Journal Article
  Year 2018 Publication Gene Abbreviated Journal Gene  
  Volume 671 Issue Pages 67-77  
  Keywords (up) Animals  
  Abstract Neuropeptides and peptide hormones play central roles in the regulation of various types of insect physiology and behavior. Artificial light at night, a form of environmental stress, has recently been regarded as a source of light stress on nocturnal insects. Because related genomic information is not available, molecular biological studies on the response of neuropeptides in nocturnal insects to light stress are limited. Based on the de novo sequencing of the Helicoverpa armigera head transcriptome, we obtained 124,960 unigenes. Of these, the number of unigenes annotated as neuropeptides and peptide hormones, neurotransmitter precursor processing enzymes, and neurotransmitter receptors were 34, 17, and 58, respectively. Under light stress, there were sex-specific differences in gene expression measured by qRT-PCR. The IMFamide, leucokinin and sNPF genes were differentially expressed at the mRNA level in males but not in females in response to light stress. The results provide new insights on the diversity of the neuropeptide transcriptional network of H. armigera. In addition, some neuropeptides exhibited sex-specific differential expression in response to light stress. Taken collectively, these results not only expand the catalog of known insect neuropeptides but also provide a framework for future functional studies on the physiological roles they play in the light stress response behavior of nocturnal moths.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0378-1119 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 1910  
Permanent link to this record
 

 
Author Raap, T.; Pinxten, R.; Eens, M. url  doi
openurl 
  Title Cavities shield birds from effects of artificial light at night on sleep Type Journal Article
  Year 2018 Publication Journal of Experimental Zoology. Part A, Ecological and Integrative Physiology Abbreviated Journal J Exp Zool A Ecol Integr Physiol  
  Volume 329 Issue 8-9 Pages 449-456  
  Keywords (up) Animals  
  Abstract Light pollution is an ever increasing worldwide problem disrupting animal behavior. Artificial light at night (ALAN) has been shown to affect sleep in wild birds. Even cavity-nesting bird species may be affected when sleeping inside their cavity. Correlational studies suggest that light from outside the cavity/nest box, for example from street lights, may affect sleep. We used an experimental design to study to what extent nest boxes shield animals from effects of ALAN on sleep. We recorded individual sleep behavior of free-living great tits (Parus major) that were roosting in dark nest boxes and exposed their nest box entrance to ALAN the following night (1.6 lux white LED light; a similar light intensity as was found at nest boxes near street lights). Their behavior was compared to that of control birds sleeping in dark nest boxes on both nights. Our experimental treatment did not affect sleep behavior. Sleep behavior of birds in the control group did not differ from that of individuals in the light treated group. Our results suggest that during winter cavities shield birds from some effects of ALAN. Furthermore, given that effects of ALAN and exposure to artificial light are species-, sex-, and season-dependent, it is important that studies using wild animals quantify individual exposure to light pollution, and be cautious in the interpretation and generalization of the effects, or lack thereof, from light pollution. Rigorous studies are necessary to examine individual light exposure and its consequences in cavity- and open-nesting birds.  
  Address Department of Biology, Behavioural Ecology and Ecophysiology Group, University of Antwerp, Wilrijk, Belgium  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2471-5638 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:29781104 Approved no  
  Call Number GFZ @ kyba @ Serial 1912  
Permanent link to this record
 

 
Author van Grunsven, R.H.A.; Jahnichen, D.; Grubisic, M.; Hölker, F. url  doi
openurl 
  Title Slugs (Arionidae) benefit from nocturnal artificial illumination Type Journal Article
  Year 2018 Publication Journal of Experimental Zoology. Part A, Ecological and Integrative Physiology Abbreviated Journal J Exp Zool A Ecol Integr Physiol  
  Volume 329 Issue 8-9 Pages 429-433  
  Keywords (up) Animals  
  Abstract Artificial illumination increases around the globe and this has been found to affect many groups of organisms and ecosystems. By manipulating nocturnal illumination using one large experimental field site with 24 streetlights and one dark control, we assessed the impact of artificial illumination on slugs over a period of 4 years. The number of slugs, primarily Arionidae, increased strongly in the illuminated site but not on the dark site. There are several nonexclusive explanations for this effect, including reduced predation and increased food quality in the form of carcasses of insects attracted by the light. As slugs play an important role in ecosystems and are also important pest species, the increase of slugs under artificial illumination cannot only affect ecosystem functioning but also have important economic consequences.  
  Address Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Berlin, Germany  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2471-5638 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:29761669 Approved no  
  Call Number GFZ @ kyba @ Serial 1913  
Permanent link to this record
 

 
Author Durrant, J.; Botha, L.M.; Green, M.P.; Jones, T.M. url  doi
openurl 
  Title Artificial light at night prolongs juvenile development time in the black field cricket, Teleogryllus commodus Type Journal Article
  Year 2018 Publication Journal of Experimental Zoology. Part B, Molecular and Developmental Evolution Abbreviated Journal J Exp Zool B Mol Dev Evol  
  Volume 330 Issue 4 Pages 225-233  
  Keywords (up) Animals  
  Abstract A growing body of evidence exists to support a detrimental effect of the presence of artificial light at night (ALAN) on life-history and fitness traits. However, few studies simultaneously investigate multiple traits and the life stages at which changes manifest. We experimentally manipulated ALAN intensities, within those found in the natural environment, to explore the consequences for growth, survival, and reproductive success of the field cricket, Teleogryllus commodus. We reared crickets from egg to adult under a daily light-cycle consisting of 12 hr bright daylight (2,600 lx) followed by either 12 hr darkness (0 lx) or dim-light environments (1, 10, or 100 lx). We found egg hatch, adult survival, and reproductive measures were largely comparable for all treatments. However, juvenile development time (number of days from egg to adult) was on average 10 days (14%) longer and adults were also larger when crickets were exposed to any light at night (1, 10, or 100 lx). Our data demonstrate that chronic lifetime exposure to ALAN can modulate the timing of life-history events and may disrupt phenology to a similar extent as other abiotic factors.  
  Address The School of BioSciences, Faculty of Science, University of Melbourne, Victoria, Australia  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1552-5007 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:29862646 Approved no  
  Call Number GFZ @ kyba @ Serial 1925  
Permanent link to this record
 

 
Author Spoelstra, K.; Ramakers, J.J.C.; van Dis, N.E.; Visser, M.E. url  doi
openurl 
  Title No effect of artificial light of different colors on commuting Daubenton's bats (Myotis daubentonii) in a choice experiment Type Journal Article
  Year 2018 Publication Journal of Experimental Zoology. Part A, Ecological and Integrative Physiology Abbreviated Journal J Exp Zool A Ecol Integr Physiol  
  Volume 329 Issue 8-9 Pages 506-510  
  Keywords (up) Animals  
  Abstract Progressive illumination at night poses an increasing threat to species worldwide. Light at night is particularly problematic for bats as most species are nocturnal and often cross relatively large distances when commuting between roosts and foraging grounds. Earlier studies have shown that illumination of linear structures in the landscape disturbs commuting bats, and that the response of bats to light may strongly depend on the light spectrum. Here, we studied the impact of white, green, and red light on commuting Daubenton's bats (Myotis daubentonii). We used a unique location where commuting bats cross a road by flying through two identical, parallel culverts underneath. We illuminated the culverts with white, red, and green light, with an intensity of 5 lux at the water surface. Bats had to choose between the two culverts, each with a different lighting condition every night. We presented all paired combinations of white, green, and red light and dark control in a factorial design. Contrary to our expectations, the number of bat passes through a culvert was unaffected by the presence of light. Furthermore, bats did not show any preference for light color. These results show that the response of commuting Daubenton's bats to different colors of light at night with a realistic intensity may be limited when passing through culverts.  
  Address Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2471-5638 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:29808964 Approved no  
  Call Number GFZ @ kyba @ Serial 1927  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: