toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Hu, Z.; Hu, H.; Huang, Y. url  doi
openurl 
  Title Association between nighttime artificial light pollution and sea turtle nest density along Florida coast: A geospatial study using VIIRS remote sensing data Type Journal Article
  Year 2018 Publication Environmental Pollution (Barking, Essex : 1987) Abbreviated Journal Environ Pollut  
  Volume 239 Issue Pages 30-42  
  Keywords (up) Animals; Remote Sensing  
  Abstract Artificial lighting at night has becoming a new type of pollution posing an important anthropogenic environmental pressure on organisms. The objective of this research was to examine the potential association between nighttime artificial light pollution and nest densities of the three main sea turtle species along Florida beaches, including green turtles, loggerheads, and leatherbacks. Sea turtle survey data was obtained from the “Florida Statewide Nesting Beach Survey program”. We used the new generation of satellite sensor “Visible Infrared Imaging Radiometer Suite (VIIRS)” (version 1 D/N Band) nighttime annual average radiance composite image data. We defined light pollution as artificial light brightness greater than 10% of the natural sky brightness above 45 degrees of elevation (>1.14x10(-11) Wm(-2)sr(-1)). We fitted a generalized linear model (GLM), a GLM with eigenvectors spatial filtering (GLM-ESF), and a generalized estimating equations (GEE) approach for each species to examine the potential correlation of nest density with light pollution. Our models are robust and reliable in terms of the ability to deal with data distribution and spatial autocorrelation (SA) issues violating model assumptions. All three models found that nest density is significantly negatively correlated with light pollution for each sea turtle species: the higher light pollution, the lower nest density. The two spatially extended models (GLM-ESF and GEE) show that light pollution influences nest density in a descending order from green turtles, to loggerheads, and then to leatherbacks. The research findings have an implication for sea turtle conservation policy and ordinance making. Near-coastal lights-out ordinances and other approaches to shield lights can protect sea turtles and their nests. The VIIRS DNB light data, having significant improvements over comparable data by its predecessor, the DMSP-OLS, shows promise for continued and improved research about ecological effects of artificial light pollution.  
  Address Department of Computing Sciences, Texas A&M University-Corpus Christi, Corpus Christi, TX, USA. Electronic address: Lucy.Huang@tamucc.edu  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0269-7491 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:29649758 Approved no  
  Call Number GFZ @ kyba @ Serial 1855  
Permanent link to this record
 

 
Author Bowne, D.R.; Cosentino, B.J.; Anderson, L.J.; Bloch, C.P.; Cooke, S.; Crumrine, P.W.; Dallas, J.; Doran, A.; Dosch, J.J.; Druckenbrod, D.L.; Durtsche, R.D.; Garneau, D.; Genet, K.S.; Fredericksen, T.S.; Kish, P.A.; Kolozsvary, M.B.; Kuserk, F.T.; Lindquist, E.S.; Mankiewicz, C.; March, J.G.; Muir, T.J.; Murray, K.G.; Santulli, M.N.; Sicignano, F.J.; Smallwood, P.D.; Urban, R.A.; Winnett-Murray, K.; Zimmermann, C.R. url  doi
openurl 
  Title Effects of urbanization on the population structure of freshwater turtles across the United States Type Journal Article
  Year 2018 Publication Conservation Biology : the Journal of the Society for Conservation Biology Abbreviated Journal Conserv Biol  
  Volume 32 Issue 5 Pages 1150-1161  
  Keywords (up) Animals; Remote Sensing  
  Abstract Landscape-scale alterations that accompany urbanization may negatively affect the population structure of wildlife species such as freshwater turtles. Changes to nesting sites and higher mortality rates due to vehicular collisions and increased predator populations may particularly affect immature turtles and mature female turtles. We hypothesized that the proportions of adult female and immature turtles in a population will negatively correlate with landscape urbanization. As a collaborative effort of the Ecological Research as Education Network (EREN), we sampled freshwater turtle populations in 11 states across the central and eastern United States. Contrary to expectations, we found a significant positive relationship between proportions of mature female painted turtles (Chrysemys picta) and urbanization. We did not detect a relationship between urbanization and proportions of immature turtles. Urbanization may alter the thermal environment of nesting sites such that more females are produced as urbanization increases. Our approach of creating a collaborative network of scientists and students at undergraduate institutions proved valuable in terms of testing our hypothesis over a large spatial scale while also allowing students to gain hands-on experience in conservation science. This article is protected by copyright. All rights reserved.  
  Address Department of Biology, Rogers State University, 1701 W. Will Rogers Boulevard, Claremore, OK 74017, U.S.A  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0888-8892 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:29781169 Approved no  
  Call Number GFZ @ kyba @ Serial 1920  
Permanent link to this record
 

 
Author Russart, K.L.G.; Nelson, R.J. url  doi
openurl 
  Title Artificial light at night alters behavior in laboratory and wild animals Type Journal Article
  Year 2018 Publication Journal of Experimental Zoology. Part A, Ecological and Integrative Physiology Abbreviated Journal J Exp Zool A Ecol Integr Physiol  
  Volume 329 Issue 8-9 Pages 401-408  
  Keywords (up) Animals; Review  
  Abstract Life has evolved to internalize and depend upon the daily and seasonal light cycles to synchronize physiology and behavior with environmental conditions. The nightscape has been vastly changed in response to the use of artificial lighting. Wildlife is now often exposed to direct lighting via streetlights or indirect lighting via sky glow at night. Because many activities rely on daily and seasonal light cues, the effects of artificial light at night could be extensive, but remain largely unknown. Laboratory studies suggest exposure to light at night can alter typical timing of daily locomotor activity and shift the timing of foraging/food intake to the daytime in nocturnal rodents. Additionally, nocturnal rodents decrease anxiety-like behaviors (i.e., spend more time in the open and increase rearing up) in response to even dim light at night. These are all likely maladaptive responses in the wild. Photoperiodic animals rely on seasonal changes in day length as a cue to evoke physiological and behavioral modifications to anticipate favorable and unfavorable conditions for survival and reproduction. Light at night can mask detection of short days, inappropriately signal long days, and thus desynchronize seasonal reproductive activities. We review laboratory and the sparse field studies that address the effects of exposure to artificial light at night to propose that exposure to light at night disrupts circadian and seasonal behavior in wildlife, which potentially decreases individual fitness and modifies ecosystems.  
  Address Behavioral Medicine and Psychiatry, School of Medicine, West Virginia University, Morgantown, West Virginia  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2471-5638 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:29806740 Approved no  
  Call Number GFZ @ kyba @ Serial 1928  
Permanent link to this record
 

 
Author Gonzalez, M.M.C. url  doi
openurl 
  Title Dim Light at Night and Constant Darkness: Two Frequently Used Lighting Conditions That Jeopardize the Health and Well-being of Laboratory Rodents Type Journal Article
  Year 2018 Publication Frontiers in Neurology Abbreviated Journal Front Neurol  
  Volume 9 Issue Pages 609  
  Keywords (up) Animals; Review  
  Abstract The influence of light on mammalian physiology and behavior is due to the entrainment of circadian rhythms complemented with a direct modulation of light that would be unlikely an outcome of circadian system. In mammals, physiological and behavioral circadian rhythms are regulated by the suprachiasmatic nucleus (SCN) of the hypothalamus. This central control allows organisms to predict and anticipate environmental change, as well as to coordinate different rhythmic modalities within an individual. In adult mammals, direct retinal projections to the SCN are responsible for resetting and synchronizing physiological and behavioral rhythms to the light-dark (LD) cycle. Apart from its circadian effects, light also has direct effects on certain biological functions in such a way that the participation of the SCN would not be fundamental for this network. The objective of this review is to increase awareness, within the scientific community and commercial providers, of the fact that laboratory rodents can experience a number of adverse health and welfare outcomes attributed to commonly-used lighting conditions in animal facilities during routine husbandry and scientific procedures, widely considered as “environmentally friendly.” There is increasing evidence that exposure to dim light at night, as well as chronic constant darkness, challenges mammalian physiology and behavior resulting in disrupted circadian rhythms, neural death, a depressive-behavioral phenotype, cognitive impairment, and the deregulation of metabolic, physiological, and synaptic plasticity in both the short and long terms. The normal development and good health of laboratory rodents requires cyclical light entrainment, adapted to the solar cycle of day and night, with null light at night and safe illuminating qualities during the day. We therefore recommend increased awareness of the limited information available with regards to lighting conditions, and therefore that lighting protocols must be taken into consideration when designing experiments and duly highlighted in scientific papers. This practice will help to ensure the welfare of laboratory animals and increase the likelihood of producing reliable and reproducible results.  
  Address Seccion Cronobiologia y Sueno, Instituto Ferrero de Neurologia y Sueno, Buenos Aires, Argentina  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1664-2295 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:30116218; PMCID:PMC6084421 Approved no  
  Call Number NC @ ehyde3 @ Serial 2084  
Permanent link to this record
 

 
Author Hüppop, O.; Ciach, M.; Diehl, R.; Reynolds, D.R.; Stepanian, P.M.; Menz, M.H.M. url  doi
openurl 
  Title Perspectives and challenges for the use of radar in biological conservation Type Journal Article
  Year 2018 Publication Ecography Abbreviated Journal Ecography  
  Volume in press Issue Pages  
  Keywords (up) Animals; Review  
  Abstract Radar is at the forefront for the study of broad‐scale aerial movements of birds, bats and insects and related issues in biological conservation. Radar techniques are especially useful for investigating species which fly at high altitudes, in darkness, or which are too small for applying electronic tags. Here, we present an overview of radar applications in biological conservation and highlight its future possibilities. Depending on the type of radar, information can be gathered on local‐ to continental‐scale movements of airborne organisms and their behaviour. Such data can quantify flyway usage, biomass and nutrient transport (bioflow), population sizes, dynamics and distributions, times and dimensions of movements, areas and times of mass emergence and swarming, habitat use and activity ranges. Radar also captures behavioural responses to anthropogenic disturbances, artificial light and man‐made structures. Weather surveillance and other long‐range radar networks allow spatially broad overviews of important stopover areas, songbird mass roosts and emergences from bat caves. Mobile radars, including repurposed marine radars and commercially dedicated ‘bird radars’, offer the ability to track and monitor the local movements of individuals or groups of flying animals. Harmonic radar techniques have been used for tracking short‐range movements of insects and other small animals of conservation interest. However, a major challenge in aeroecology is determining the taxonomic identity of the targets, which often requires ancillary data obtained from other methods. Radar data have become a global source of information on ecosystem structure, composition, services and function and will play an increasing role in the monitoring and conservation of flying animals and threatened habitats worldwide.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0906-7590 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 2204  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: