toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Kumar, J.; Malik, S.; Bhardwaj, S.K.; Rani, S. url  doi
openurl 
  Title Bright light at night alters the perception of daylength in Indian weaver bird (Ploceus philippinus) Type Journal Article
  Year 2018 Publication Journal of Experimental Zoology. Part A, Ecological and Integrative Physiology Abbreviated Journal J Exp Zool A Ecol Integr Physiol  
  Volume 329 Issue 8-9 Pages 488-496  
  Keywords Animals  
  Abstract The brighter nights have posed new challenges to the wild species by affecting their temporal physiology. The present study on Indian weaver bird (Ploceus philippinus) investigated if exposure to bright light at different phases of night affects their clock-mediated daily functions. Birds were placed individually in specially designed activity cages under short days and long nights (8L:16D; L = 100 lux, D < 0.1 lux) for approximately 3 weeks (19 days). Thereafter, they were divided into four groups (n = 6-9), and given approximately 2 lux light either for the entire night (ZT 08-24; zeitgeber time 0 = time of light on; pattern A) or for 4 hr (pattern B), placed in 16 hr night such that its onset coincides with the onset of night (early night group, ZT 08-12), its end with the end of night (late night group, ZT 20-24), or the night was interrupted in the middle (midnight group, ZT 14-18). The results showed that bright light in entire night induced early onset of day activity and fragmented rest at night, however, if given at different phases of night, it made the days longer by delaying end (early night group) or advancing onset of daily activity (late night group). It also suppressed the melatonin levels and increased body temperature. These results suggest that bright light at night alters the perception of daylength and affects the underlying physiology. The findings may be useful in adopting a strategy for use of night light without disturbing species fitness in their environment.  
  Address Department of Zoology, University of Lucknow, Lucknow, India  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language (down) English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2471-5638 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:30043408 Approved no  
  Call Number GFZ @ kyba @ Serial 1971  
Permanent link to this record
 

 
Author Mason, I.C.; Boubekri, M.; Figueiro, M.G.; Hasler, B.P.; Hattar, S.; Hill, S.M.; Nelson, R.J.; Sharkey, K.M.; Wright, K.P.; Boyd, W.A.; Brown, M.K.; Laposky, A.D.; Twery, M.J.; Zee, P.C. url  doi
openurl 
  Title Circadian Health and Light: A Report on the National Heart, Lung, and Blood Institute's Workshop Type Journal Article
  Year 2018 Publication Journal of Biological Rhythms Abbreviated Journal J Biol Rhythms  
  Volume 33 Issue 5 Pages 451-457  
  Keywords Human Health  
  Abstract Despite the omnipresence of artificial and natural light exposure, there exists little guidance in the United States and elsewhere on light exposure in terms of timing, intensity, spectrum, and other light characteristics known to affect human health, performance, and well-being; in parallel, there is little information regarding the quantity and characteristics of light exposure that people receive. To address this, the National Center on Sleep Disorders Research, in the Division of Lung Diseases, National Heart, Lung, and Blood Institute, held a workshop in August 2016 on circadian health and light. Workshop participants discussed scientific research advances on the effects of light on human physiology, identified remaining knowledge gaps in these research areas, and articulated opportunities to use appropriate lighting to protect and improve circadian-dependent health. Based on this workshop, participants put forth the following strategic intent, objectives, and strategies to guide discovery, measurement, education, and implementation of the appropriate use of light to achieve, promote, and maintain circadian health in modern society.  
  Address Center for Circadian and Sleep Medicine, Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, Illinois  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language (down) English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0748-7304 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:30033850 Approved no  
  Call Number GFZ @ kyba @ Serial 1975  
Permanent link to this record
 

 
Author Jones, B.A. url  doi
openurl 
  Title Spillover health effects of energy efficiency investments: Quasi-experimental evidence from the Los Angeles LED streetlight program Type Journal Article
  Year 2018 Publication Journal of Environmental Economics and Management Abbreviated Journal Journal of Environmental Economics and Management  
  Volume 88 Issue Pages 283-299  
  Keywords Human Health; LED; public health; outdoor lighting; Los Angeles; economics; energy efficiency; breast cancer; fossil fuel carbon emissions  
  Abstract Payback estimates of energy efficiency investments often ignore public health externalities. This is problematic in cases where spillover health effects are substantial, such as when the application of new technology alters environmental exposures. When health externalities are included in return on investment calculations, energy efficiency programs may look more or less attractive than suggested by conventional “energy savings only” estimates. This analysis exploits the quasi-experiment provided by the 2009 Los Angeles (LA) LED streetlight efficiency program to investigate the returns on investments inclusive of an originally estimated health externality. Using the synthetic control method, we find that the LED streetlight program is associated with a lagged increase in breast cancer mortality of 0.479 per 100,000. Inclusive of the effects of LEDs on breast cancer and avoided carbon emissions, the LA LED program provides a −146.2% 10-year return compared to +118.2% when health outcomes and carbon emissions are ignored.  
  Address Department of Economics, University of New Mexico, 1 UNM Drive, MSC 05 3060, Albuquerque, NM, 87131, USA; bajones(at)unm.edu  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language (down) English Summary Language English Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0095-0696 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number IDA @ john @ Serial 1976  
Permanent link to this record
 

 
Author El-Bakry, H.A.; Ismail, I.A.; Soliman, S.S. url  doi
openurl 
  Title Immunosenescence-like state is accelerated by constant light exposure and counteracted by melatonin or turmeric administration through DJ-1/Nrf2 and P53/Bax pathways Type Journal Article
  Year 2018 Publication Journal of Photochemistry and Photobiology. B, Biology Abbreviated Journal J Photochem Photobiol B  
  Volume 186 Issue Pages 69-80  
  Keywords Animals  
  Abstract The awareness of the interrelationship between immunosenescence and constant light exposure can provide new insights into the consequences of excessive exposure to light at night due to light pollution or shift work. Here, we investigated whether constant light exposure (LL) acts as an inducer of immunosenescence. We also determined the role of melatonin or turmeric in reversing the putative effects of constant light and explored for the first time the underlying molecular mechanisms. Young (3-4-month-old) rats were exposed daily to LL alone or in combination with each of melatonin and turmeric for 12weeks. A group of aged rats (18-months old; n=6) was used as a reference for natural immunosenescence. Constant light exposure resulted in remarkable pathophysiological alterations resembling those noticed in normal aged rats, manifested as apparent decreases in antioxidant activities as well as Nrf2 and DJ-1 expressions, striking augmentation in oxidative stress, proinflammatory cytokines and expression of TNFalpha, Bax, and p53 genes, and deleterious changes of lymphoid organs, Co-administration of melatonin or turmeric was able to reverse all alterations induced by LL through upregulation of Nrf2/DJ-1 and downregulation of p53/Bax pathways. These data suggest that LL accelerates immunosenescence via oxidative stress and apoptotic pathways. They also demonstrate for the first time that turmeric is comparable to melatonin in boosting the immune function and counteracting the LL-associated immunosenescence. These effects suggest that turmeric supplementation can be used as an inexpensive intervention to prevent circadian disruption-related immunosenescence. However, to validate the effects of turmeric on humans further studies are warranted.  
  Address Department of Zoology & Entomology, Faculty of Science, Minia University, Egypt  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language (down) English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1011-1344 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:30015062 Approved no  
  Call Number GFZ @ kyba @ Serial 1984  
Permanent link to this record
 

 
Author Souman, J.L.; Borra, T.; de Goijer, I.; Schlangen, L.J.M.; Vlaskamp, B.N.S.; Lucassen, M.P. url  doi
openurl 
  Title Spectral Tuning of White Light Allows for Strong Reduction in Melatonin Suppression without Changing Illumination Level or Color Temperature Type Journal Article
  Year 2018 Publication Journal of Biological Rhythms Abbreviated Journal J Biol Rhythms  
  Volume 33 Issue 4 Pages 420-431  
  Keywords Human Health; Lighting  
  Abstract Studies with monochromatic light stimuli have shown that the action spectrum for melatonin suppression exhibits its highest sensitivity at short wavelengths, around 460 to 480 nm. Other studies have demonstrated that filtering out the short wavelengths from white light reduces melatonin suppression. However, this filtering of short wavelengths was generally confounded with reduced light intensity and/or changes in color temperature. Moreover, it changed the appearance from white light to yellow/orange, rendering it unusable for many practical applications. Here, we show that selectively tuning a polychromatic white light spectrum, compensating for the reduction in spectral power between 450 and 500 nm by enhancing power at even shorter wavelengths, can produce greatly different effects on melatonin production, without changes in illuminance or color temperature. On different evenings, 15 participants were exposed to 3 h of white light with either low or high power between 450 and 500 nm, and the effects on salivary melatonin levels and alertness were compared with those during a dim light baseline. Exposure to the spectrum with low power between 450 and 500 nm, but high power at even shorter wavelengths, did not suppress melatonin compared with dim light, despite a large difference in illuminance (175 vs. <5 lux). In contrast, exposure to the spectrum with high power between 450 and 500 nm (also 175 lux) resulted in almost 50% melatonin suppression. For alertness, no significant differences between the 3 conditions were observed. These results open up new opportunities for lighting applications that allow for the use of electrical lighting without disturbance of melatonin production.  
  Address Philips Lighting Research, Department Lighting Applications, Eindhoven, The Netherlands  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language (down) English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0748-7304 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:29984614 Approved no  
  Call Number GFZ @ kyba @ Serial 1985  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: