toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Gonzalez, T.J.; Lu, Y.; Boswell, M.; Boswell, W.; Medrano, G.; Walter, S.; Ellis, S.; Savage, M.; Varga, Z.M.; Lawrence, C.; Sanders, G.; Walter, R.B. url  doi
openurl 
  Title Fluorescent light exposure incites acute and prolonged immune responses in Zebrafish (Danio rerio) skin Type Journal Article
  Year 2018 Publication Comparative Biochemistry and Physiology. Toxicology & Pharmacology : CBP Abbreviated Journal Comp Biochem Physiol C Toxicol Pharmacol  
  Volume 208 Issue Pages 87-95  
  Keywords Animals  
  Abstract Artificial light produces an emission spectrum that is considerably different than the solar spectrum. Artificial light has been shown to affect various behavior and physiological processes in vertebrates. However, there exists a paucity of data regarding the molecular genetic effects of artificial light exposure. Previous studies showed that one of the commonly used fluorescent light source (FL; 4100K or “cool white”) can affect signaling pathways related to maintenance of circadian rhythm, cell cycle progression, chromosome segregation, and DNA repair/recombination in the skin of male Xiphophorus maculatus. These observations raise questions concerning the kinetics of the FL induced gene expression response, and which biological functions become modulated at various times after light exposure. To address these questions, we exposed zebrafish to 4100K FL and utilized RNASeq to assess gene expression changes in skin at various times (1 to 12h) after FL exposure. We found 4100K FL incites a robust early (1-2h) transcriptional response, followed by a more protracted late response (i.e., 4-12h). The early transcriptional response involves genes associated with cell migration/infiltration and cell proliferation as part of an overall increase in immune function and inflammation. The protracted late transcriptional response occurs within gene sets predicted to maintain and perpetuate the inflammatory response, as well as suppression of lipid, xenobiotic, and melatonin metabolism.  
  Address Xiphophorus Genetic Stock Center, Department of Chemistry and Biochemistry, 419 Centennial Hall, Texas State University, 601 University Drive, San Marcos, TX 78666, USA. Electronic address: RWalter@txstate.edu  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language (down) English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1532-0456 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:28965927 Approved no  
  Call Number LoNNe @ kyba @ Serial 1740  
Permanent link to this record
 

 
Author Kocifaj, M. url  doi
openurl 
  Title Towards a Comprehensive City Emission Function (CCEF) Type Journal Article
  Year 2018 Publication Journal of Quantitative Spectroscopy and Radiative Transfer Abbreviated Journal JQSRT  
  Volume 205 Issue Pages 253-266  
  Keywords Lighting; Skyglow  
  Abstract The comprehensive city emission function (CCEF) is developed for a heterogeneous light-emitting or blocking urban environments, embracing any combination of input parameters that characterize linear dimensions in the system (size and distances between buildings or luminaires), properties of light-emitting elements (such as luminous building façades and street lighting), ground reflectance and total uplight-fraction, all of these defined for an arbitrarily sized 2D area. The analytical formula obtained is not restricted to a single model class as it can capture any specific light-emission feature for wide range of cities. The CCEF method is numerically fast in contrast to what can be expected of other probabilistic approaches that rely on repeated random sampling. Hence the present solution has great potential in light-pollution modeling and can be included in larger numerical models. Our theoretical findings promise great progress in light-pollution modeling as this is the first time an analytical solution to city emission function (CEF) has been developed that depends on statistical mean size and height of city buildings, inter-building separation, prevailing heights of light fixtures, lighting density, and other factors such as e.g. luminaire light output and light distribution, including the amount of uplight, and representative city size. The model is validated for sensitivity and specificity pertinent to combinations of input parameters in order to test its behavior under various conditions, including those that can occur in complex urban environments. It is demonstrated that the solution model succeeds in reproducing a light emission peak at some elevated zenith angles and is consistent with reduced rather than enhanced emission in directions nearly parallel to the ground.  
  Address  
  Corporate Author Thesis  
  Publisher ScienceDirect Place of Publication Editor  
  Language (down) English Summary Language English Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number LoNNe @ kyba @ Serial 1757  
Permanent link to this record
 

 
Author Bará, S.; Escofet, J. url  doi
openurl 
  Title On lamps, walls, and eyes: The spectral radiance field and the evaluation of light pollution indoors Type Journal Article
  Year 2018 Publication Journal of Quantitative Spectroscopy and Radiative Transfer Abbreviated Journal J of Quant Spect and Rad Trans  
  Volume 205 Issue Pages 267-277  
  Keywords Instrumentation; Light pollution; Artificial light at night; Light field; Radiance field; Radiometry; Photometry  
  Abstract Light plays a key role in the regulation of different physiological processes, through several visual and non-visual retinal phototransduction channels whose basic features are being unveiled by recent research. The growing body of evidence on the significance of these effects has sparked a renewed interest in the determination of the light field at the entrance pupil of the eye in indoor spaces. Since photic interactions are strongly wavelength-dependent, a significant effort is being devoted to assess the relative merits of the spectra of the different types of light sources available for use at home and in the workplace. The spectral content of the light reaching the observer eyes in indoor spaces, however, does not depend exclusively on the sources: it is partially modulated by the spectral reflectance of the walls and surrounding surfaces, through the multiple reflections of the light beams along all possible paths from the source to the observer. This modulation can modify significantly the non-visual photic inputs that would be produced by the lamps alone, and opens the way for controlling—to a certain extent—the subject's exposure to different regions of the optical spectrum. In this work we evaluate the expected magnitude of this effect and we show that, for factorizable sources, the spectral modulation can be conveniently described in terms of a set of effective filter-like functions that provide useful insights for lighting design and light pollution assessment. The radiance field also provides a suitable bridge between indoor and outdoor light pollution studies.  
  Address Área de Óptica, Departamento de Física Aplicada, Universidade de Santiago de Compostela, Santiago de Compostela, Galicia, Spain; salva.bara(at)usc.es  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language (down) English Summary Language English Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-4073 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number IDA @ john @ Serial 2163  
Permanent link to this record
 

 
Author Foster, J.J.; Smolka, J.; Nilsson, D.-E.; Dacke, M. url  doi
openurl 
  Title How animals follow the stars Type Journal Article
  Year 2018 Publication Proceedings. Biological Sciences Abbreviated Journal Proc Biol Sci  
  Volume 285 Issue 1871 Pages  
  Keywords Vision; Animals  
  Abstract Throughout history, the stars have provided humans with ever more information about our world, enabling increasingly accurate systems of navigation in addition to fuelling some of the greatest scientific controversies. What information animals have evolved to extract from a starry sky and how they do so, is a topic of study that combines the practical and theoretical challenges faced by both astronomers and field biologists. While a number of animal species have been demonstrated to use the stars as a source of directional information, the strategies that these animals use to convert this complex and variable pattern of dim-light points into a reliable 'stellar orientation' cue have been more difficult to ascertain. In this review, we assess the stars as a visual stimulus that conveys directional information, and compare the bodies of evidence available for the different stellar orientation strategies proposed to date. In this context, we also introduce new technologies that may aid in the study of stellar orientation, and suggest how field experiments may be used to characterize the mechanisms underlying stellar orientation.  
  Address Department of Biology, Lund University, Solvegatan 35, Lund 223 62, Sweden  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language (down) English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0962-8452 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:29367394 Approved no  
  Call Number LoNNe @ kyba @ Serial 1802  
Permanent link to this record
 

 
Author Johns, L.E.; Jones, M.E.; Schoemaker, M.J.; McFadden, E.; Ashworth, A.; Swerdlow, A.J. url  doi
openurl 
  Title Domestic light at night and breast cancer risk: a prospective analysis of 105 000 UK women in the Generations Study Type Journal Article
  Year 2018 Publication British Journal of Cancer Abbreviated Journal Br J Cancer  
  Volume 118 Issue Pages 600-606  
  Keywords Human Health  
  Abstract BACKGROUND: Circadian disruption caused by exposure to light at night (LAN) has been proposed as a risk factor for breast cancer and a reason for secular increases in incidence. Studies to date have largely been ecological or case-control in design and findings have been mixed. METHODS: We investigated the relationship between LAN and breast cancer risk in the UK Generations Study. Bedroom light levels and sleeping patterns at age 20 and at study recruitment were obtained by questionnaire. Analyses were conducted on 105 866 participants with no prior history of breast cancer. During an average of 6.1 years of follow-up, 1775 cases of breast cancer were diagnosed. Cox proportional hazard models were used to calculate hazard ratios (HRs), adjusting for potential confounding factors. RESULTS: There was no association between LAN level and breast cancer risk overall (highest compared with lowest LAN level at recruitment: HR=1.01, 95% confidence interval (CI): 0.88-1.15), or for invasive (HR=0.98, 95% CI: 0.85-1.13) or in situ (HR=0.96, 95% CI: 0.83-1.11) breast cancer, or oestrogen-receptor (ER) positive (HR=0.98, 95% CI: 0.84-1.14); or negative (HR=1.16, 95% CI: 0.82-1.65) tumours separately. The findings did not differ by menopausal status. Adjusting for sleep duration, sleeping at unusual times (non-peak sleep) and history of night work did not affect the results. Night waking with exposure to light, occurring around age 20, was associated with a reduced risk of premenopausal breast cancer (HR for breast cancer overall=0.74, 95% CI: 0.55-0.99; HR for ER-positive breast cancer=0.69, 95% CI: 0.49-0.97). CONCLUSIONS: In this prospective cohort analysis of LAN, there was no evidence that LAN exposure increased the risk of subsequent breast cancer, although the suggestion of a lower breast cancer risk in pre-menopausal women with a history of night waking in their twenties may warrant further investigation.British Journal of Cancer advance online publication, 23 January 2018; doi:10.1038/bjc.2017.359 www.bjcancer.com.  
  Address Division of Breast Cancer Research, The Institute of Cancer Research, London SW3 6JB, UK  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language (down) English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0007-0920 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:29360812 Approved no  
  Call Number LoNNe @ kyba @ Serial 1803  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: