toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Yang, M.; Ma, N.; Zhu, Y.; Su, Y.-C.; Chen, Q.; Hsiao, F.-C.; Ji, Y.; Yang, C.-M.; Zhou, G. url  doi
openurl 
  Title The Acute Effects of Intermittent Light Exposure in the Evening on Alertness and Subsequent Sleep Architecture Type Journal Article
  Year 2018 Publication International Journal of Environmental Research and Public Health Abbreviated Journal Int J Environ Res Public Health  
  Volume 15 Issue 3 Pages  
  Keywords Human Health  
  Abstract Exposure to bright light is typically intermittent in our daily life. However, the acute effects of intermittent light on alertness and sleep have seldom been explored. To investigate this issue, we employed within-subject design and compared the effects of three light conditions: intermittent bright light (30-min pulse of blue-enriched bright light (~1000 lux, ~6000 K) alternating with 30-min dim normal light (~5 lux, ~3600 K) three times); continuous bright light; and continuous dim light on subjective and objective alertness and subsequent sleep structure. Each light exposure was conducted during the three hours before bedtime. Fifteen healthy volunteers (20 +/- 3.4 years; seven males) were scheduled to stay in the sleep laboratory for four separated nights (one for adaptation and the others for the light exposures) with a period of at least one week between nights. The results showed that when compared with dim light, both intermittent light and continuous bright light significantly increased subjective alertness and decreased sleep efficiency (SE) and total sleep time (TST). Intermittent light significantly increased objective alertness than dim light did during the second half of the light-exposure period. Our results suggested that intermittent light was as effective as continuous bright light in their acute effects in enhancing subjective and objective alertness and in negatively impacting subsequent sleep.  
  Address Shenzhen Guohua Optoelectronics Tech. Co., Ltd., Shenzhen 518110, China. guofu.zhou@m.scnu.edu.cn  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language (down) English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1660-4601 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:29543731 Approved no  
  Call Number GFZ @ kyba @ Serial 1822  
Permanent link to this record
 

 
Author Carta, M.G.; Preti, A.; Akiskal, H.S. url  doi
openurl 
  Title Coping with the New Era: Noise and Light Pollution, Hperactivity and Steroid Hormones. Towards an Evolutionary View of Bipolar Disorders Type Journal Article
  Year 2018 Publication Clinical Practice and Epidemiology in Mental Health : CP & EMH Abbreviated Journal Clin Pract Epidemiol Ment Health  
  Volume 14 Issue Pages 33-36  
  Keywords Human Health  
  Abstract Human population is increasing in immense cities with millions of inhabitants, in which life is expected to run 24 hours a day for seven days a week (24/7). Noise and light pollution are the most reported consequences, with a profound impact on sleep patterns and circadian biorhythms. Disruption of sleep and biorhythms has severe consequences on many metabolic pathways. Suppression of melatonin incretion at night and the subsequent effect on DNA methylation may increase the risk of prostate and breast cancer. A negative impact of light pollution on neurosteroids may also affect mood. People who carry the genetic risk of bipolar disorder may be at greater risk of full-blown bipolar disorder because of the impact of noise and light pollution on sleep patterns and circadian biorhythms. However, living in cities may also offers opportunities and might be selective for people with hyperthymic temperament, who may find themselves advantaged by increased energy prompted by increased stimulation produced by life in big cities. This might result in the spreading of the genetic risk of bipolar disorder in the coming decades. In this perspective the burden of poor quality of life, increased disability adjusted life years and premature mortality due to the increases of mood disorders is the negative side of a phenomenon that in its globality also shows adaptive aspects. The new lifestyle also influences those who adapt and show behaviors, reactions and responses that might resemble the disorder, but are on the adaptive side.  
  Address University of California at San Diego USA  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language (down) English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1745-0179 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:29541149; PMCID:PMC5838624 Approved no  
  Call Number GFZ @ kyba @ Serial 1823  
Permanent link to this record
 

 
Author Correa-Cano, M.E.; Goettsch, B.; Duffy, J.P.; Bennie, J.; Inger, R.; Gaston, K.J. url  doi
openurl 
  Title Erosion of natural darkness in the geographic ranges of cacti Type Journal Article
  Year 2018 Publication Scientific Reports Abbreviated Journal Sci Rep  
  Volume 8 Issue 1 Pages 4347  
  Keywords Plants; Remote Sensing  
  Abstract Naturally dark nighttime environments are being widely eroded by the introduction of artificial light at night (ALAN). The biological impacts vary with the intensity and spectrum of ALAN, but have been documented from molecules to ecosystems. How globally severe these impacts are likely to be depends in large part on the relationship between the spatio-temporal distribution of ALAN and that of the geographic ranges of species. Here, we determine this relationship for the Cactaceae family. Using maps of the geographic ranges of cacti and nighttime stable light composite images for the period 1992 to 2012, we found that a high percentage of cactus species were experiencing ALAN within their ranges in 1992, and that this percentage had increased by 2012. For almost all cactus species (89.7%) the percentage of their geographic range that was lit increased from 1992-1996 to 2008-2012, often markedly. There was a significant negative relationship between the species richness of an area, and that of threatened species, and the level of ALAN. Cacti could be particularly sensitive to this widespread and ongoing intrusion of ALAN into their geographic ranges, especially when considering the potential for additive and synergistic interactions with the impacts of other anthropogenic pressures.  
  Address Environment and Sustainability Institute, University of Exeter, Penryn, Cornwall, TR10 9FE, UK  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language (down) English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2045-2322 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:29531261; PMCID:PMC5847551 Approved no  
  Call Number GFZ @ kyba @ Serial 1824  
Permanent link to this record
 

 
Author Cleary-Gaffney, M.; Coogan, A.N. url  doi
openurl 
  Title Limited evidence for affective and diurnal rhythm responses to dim light-at-night in male and female C57Bl/6 mice Type Journal Article
  Year 2018 Publication Physiology & Behavior Abbreviated Journal Physiol Behav  
  Volume 189 Issue Pages 78-85  
  Keywords Animals  
  Abstract Circadian rhythms are recurring patterns in a range of behavioural, physiological and molecular parameters that display periods of near 24h, and are underpinned by an endogenous biological timekeeping system. Circadian clocks are increasingly recognised as being key for health. Environmental light is the key stimulus that synchronises the internal circadian system with the external time cues. There are emergent health concerns regarding increasing worldwide prevalence of electric lighting, especially man-made light-at-night, and light's impact on the circadian system may be central to these effects. A number of previous studies have demonstrated increased depression-like behaviour in various rodent experimental models exposed to dim light-at-night. In this study we set out to study the impact of dim light-at-night on circadian and affective behaviours in C57Bl/6 mice. We set out specifically to examine the impact of sex on light at night's effects, as well as the impact of housing conditions. We report minimal impact of light-at-night on circadian and affective behaviours, as measured by the tail suspension test, the forced swim test, the sucrose preference test and the elevated plus maze. Light-at-night was also not associated with an increase in body weight, but was associated with a decrease in the cell proliferation marker Ki-67 in the dentate gyrus. In summary, we conclude that experimental contextual factors, such as model species or strain, may be considerable importance in the investigation of the impact of light at night on mood-related parameters.  
  Address Department of Psychology, Maynooth University, National University of Ireland, Maynooth, Ireland. Electronic address: andrew.coogan@mu.ie  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language (down) English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-9384 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:29540316 Approved no  
  Call Number GFZ @ kyba @ Serial 1826  
Permanent link to this record
 

 
Author Spoelstra, K.; Verhagen, I.; Meijer, D.; Visser, M.E. url  doi
openurl 
  Title Artificial light at night shifts daily activity patterns but not the internal clock in the great tit (Parus major) Type Journal Article
  Year 2018 Publication Proceedings. Biological Sciences Abbreviated Journal Proc Biol Sci  
  Volume 285 Issue 1875 Pages  
  Keywords Animals  
  Abstract Artificial light at night has shown a dramatic increase over the last decades and continues to increase. Light at night can have strong effects on the behaviour and physiology of species, which includes changes in the daily timing of activity; a clear example is the advance in dawn song onset in songbirds by low levels of light at night. Although such effects are often referred to as changes in circadian timing, i.e. changes to the internal clock, two alternative mechanisms are possible. First, light at night can change the timing of clock controlled activity, without any change to the clock itself; e.g. by a change in the phase relation between the circadian clock and expression of activity. Second, changes in daily activity can be a direct response to light ('masking'), without any involvement of the circadian system. Here, we studied whether the advance in onset of activity by dim light at night in great tits (Parus major) is indeed attributable to a phase shift of the internal clock. We entrained birds to a normal light/dark (LD) cycle with bright light during daytime and darkness at night, and to a comparable (LDim) schedule with dim light at night. The dim light at night strongly advanced the onset of activity of the birds. After at least six days in LD or LDim, we kept birds in constant darkness (DD) by leaving off all lights so birds would revert to their endogenous, circadian system controlled timing of activity. We found that the timing of onset in DD was not dependent on whether the birds were kept at LD or LDim before the measurement. Thus, the advance of activity under light at night is caused by a direct effect of light rather than a phase shift of the internal clock. This demonstrates that birds are capable of changing their daily activity to low levels of light at night directly, without the need to alter their internal clock.  
  Address Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), PO Box 50, 6700 AB Wageningen, The Netherlands  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language (down) English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0962-8452 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:29593108 Approved no  
  Call Number GFZ @ kyba @ Serial 1830  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: