|   | 
Details
   web
Records
Author Fehrer, D.; Krarti, M.
Title Spatial distribution of building energy use in the United States through satellite imagery of the earth at night Type Journal Article
Year 2018 Publication Building and Environment Abbreviated Journal Building and Environment
Volume 142 Issue Pages 252-264
Keywords remote sensing
Abstract Despite the importance of geospatial analysis of energy use in buildings, the data available for such exercises is limited. A potential solution is to use geospatial information, such as that obtained from satellites, to disaggregate building energy use data to a more useful scale. Many researchers have used satellite imagery to estimate the extent of human activities, including building energy use and population distribution. Much of the reported work has been carried out in rapidly developing countries such as India and China where urban development is dynamic and not always easy to measure. In countries with less rapid urbanization, such as the United States, there is still value in using satellite imagery to estimate building energy use for the purposes of identifying energy efficiency opportunities and planning electricity transmission. This study evaluates nighttime light imagery obtained from the VIIRS instrument aboard the SUOMI NPP satellite as a predictor of building energy use intensity within states, counties, and cities in the United States. It is found that nighttime lights can explain upwards of 90% of the variability in energy consumption in the United States, depending on conditions and geospatial scale. The results of this research are used to generate electricity and fuel consumption maps of the United States with a resolution of less than 200 square meters. The methodologies undertaken in this study can be replicated globally to create more opportunities for geospatial energy analysis without the hurdles often associated with disaggregated building energy use data collection.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language (up) Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0360-1323 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 1938
Permanent link to this record
 

 
Author Grubisic, M.; Van Grunsven, R.H.A.; Kyba, C.C.M.; Manfrin, A.; Hölker, F.
Title Insect declines and agroecosystems: does light pollution matter? Type Journal Article
Year 2018 Publication Annals of Applied Biology Abbreviated Journal Ann. of Appl. Biol.
Volume 173 Issue 1 Pages 180-189
Keywords Animals; Ecology; Review
Abstract Drastic declines in insect populations, ‘Ecological Armageddon’, have recently gained increased attention in the scientific community, and are commonly considered to be the consequence of large‐scale factors such as land‐use changes, use of pesticides, climate change and habitat fragmentation. Artificial light at night (ALAN), a pervasive global change that strongly impacts insects, remains, however, infrequently recognised as a potential contributor to the observed declines. Here, we provide a summary of recent evidence of impacts of ALAN on insects and discuss how these impacts can drive declines in insect populations in light‐polluted areas. ALAN can increase overall environmental pressure on insect populations, and this is particularly important in agroecosystems where insect communities provide important ecosystem services (such as natural pest control, pollination, conservation of soil structure and fertility and nutrient cycling), and are already under considerable environmental pressure. We discuss how changes in insect populations driven by ALAN and ALAN itself may hinder these services to influence crop production and biodiversity in agricultural landscapes. Understanding the contribution of ALAN and other factors to the decline of insects is an important step towards mitigation and the recovery of the insect fauna in our landscapes. In future studies, the role of increased nocturnal illumination also needs to be examined as a possible causal factor of insect declines in the ongoing ‘Ecological Armageddon’, along with the more commonly examined factors. Given the large scale of agricultural land use and the potential of ALAN to indirectly and directly impact crop production and biodiversity, a better understanding of effects of ALAN in agroecosystems is urgently needed.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language (up) Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 1939
Permanent link to this record
 

 
Author Benfield, J.A.; Nutt, R.J.; Taff, B.D.; Miller, Z.D.; Costigan, H.; Newman, P.
Title A laboratory study of the psychological impact of light pollution in National Parks Type Journal Article
Year 2018 Publication Journal of Environmental Psychology Abbreviated Journal Journal of Environmental Psychology
Volume 57 Issue Pages 67-72
Keywords Conservation; Skyglow; Psychology
Abstract Light pollution is ubiquitous in much of the developed and developing world, including rural and wilderness areas. Other sources of pollution, such as noise or motorized vehicle emissions, are known to impact the perceived quality of natural settings as well as the psychological well-being and satisfaction of visitors to those locations, but the effects of light pollution on visitors to natural settings is largely unstudied. Using experimental manipulations of light pollution levels in virtual reality simulations of three U.S. National Parks, the current study aimed to provide initial evidence of an effect on visitors. Results show that light pollution impacts a range of psychological and scene evaluation dimensions but that pristine night skies are not necessarily viewed as the ideal, likely due to being viewed as unfamiliar or unrealistic because so few have experienced the true baseline.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language (up) Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0272-4944 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 1941
Permanent link to this record
 

 
Author Zheng, Q.; Weng, Q.; Huang, L.; Wang, K.; Deng, J.; Jiang, R.; Ye, Z.; Gan, M.
Title A new source of multi-spectral high spatial resolution night-time light imagery—JL1-3B Type Journal Article
Year 2018 Publication Remote Sensing of Environment Abbreviated Journal Remote Sensing of Environment
Volume 215 Issue Pages 300-312
Keywords Remote Sensing
Abstract Artificial light at night (ALAN) provides a unique footprint of human activities and settlements. However, the adverse effects of ALAN on human health and ecosystems have not been well understood. Because of a lack of high resolution data, studies of ALAN in China have been confined to coarse resolution, and fine-scale details are missing. The fine details of ALAN are pertinent, because the highly dense population in Chinese cities has created a distinctive urban lighting pattern. In this paper, we introduced a new generation of high spatial resolution and multi-spectral night-time light imagery from the satellite JL1-3B. We examined its effectiveness for monitoring the spatial pattern and discriminating the types of artificial light based on a case study of Hangzhou, China. Specifically, local Moran's I analysis was applied to identify artificial light hotspots. Then, we analyzed the relationship between artificial light brightness and land uses at the parcel-level, which were generated from GF-2 imagery and open social datasets. Third, a machine learning based method was proposed to discriminate the type of lighting sources – between high pressure sodium lamps (HPS) and light-emitting diode lamps (LED) – by incorporating their spectral information and morphology feature. The result shows a complicated heterogeneity of illumination characteristics across different land uses, where main roads, commercial and institutional areas were brightly lit while residential area, industrial area and agricultural land were dark at night. It further shows that the proposed method was effective at separating light emitted by HPS and LED, with an overall accuracy and kappa coefficient of 83.86% and 0.67, respectively. This study demonstrates the effectiveness of JL1-3B and its superiority over previous night-time light data in detecting details of lighting objects and the nightscape pattern, and suggests that JL1-3B and alike could open up new opportunities for the advancement of night-time remote sensing.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language (up) Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0034-4257 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 1945
Permanent link to this record
 

 
Author Hansen, M.J.; Cocherell, D.E.; Cooke, S.J.; Patrick, P.H.; Sills, M.; Fangue, N.A.
Title Behavioural guidance of Chinook salmon smolts: the variable effects of LED spectral wavelength and strobing frequency Type Journal Article
Year 2018 Publication Conservation Physiology Abbreviated Journal
Volume 6 Issue 1 Pages
Keywords Animals
Abstract Exploiting species-specific behavioural responses of fish to light is an increasingly promising technique to reduce the entrainment or impingement of fish that results from the diversion of water for human activities, such as hydropower or irrigation. Whilst there is some evidence that white light can be an effective deterrent for Chinook salmon smolts, the results have been mixed. There is a need to test the response of fish to different spectra and strobing frequencies to improve deterrent performance. We tested the movement and spatial response of groups of four fish to combinations of light-emitting diode (LED) spectra (red, green, blue and white light) during the day and night, and strobing frequencies (constant and 2Hz) during the day, using innovative LED technology intended as a behavioural guidance device for use in the field. Whilst strobing did not alter fish behaviour when compared to constant light, the red light had a repulsive effect during the day, with fish under this treatment spending significantly less time in the half of the arena closest to the behavioural guidance device compared to both the control and blue light. Importantly, this effect disappeared at night, where there were no differences in movement and space use found between spectra. There was some evidence of a potential attractive response of fish to the blue and green light during the day. Under these light treatments, fish spent the highest amount of time closest to the behavioural guidance device. Further tests manipulating the light intensity in the different spectra are needed to verify the mechanistic determinants of the observed behaviours. Results are discussed in reference to the known spectral sensitivities of the cone and rod photopigments in these fish, and further experiments are suggested to better relate the work to mitigating the effects on fish of infrastructure used for hydropower and irrigation.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language (up) Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2051-1434 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 1947
Permanent link to this record