|   | 
Details
   web
Records
Author Nelson, R.J.; Chbeir, S.
Title Dark matters: effects of light at night on metabolism Type Journal Article
Year 2018 Publication The Proceedings of the Nutrition Society Abbreviated Journal Proc Nutr Soc
Volume 77 Issue 3 Pages 223-229
Keywords Human Health
Abstract Life on earth has evolved during the past several billion years under relatively bright days and dark night conditions. The wide-spread adoption of electric lights during the past century exposed animals, both human and non-human, to significant light at night for the first time in their evolutionary history. Endogenous circadian clocks depend on light to entrain to the external daily environment and seasonal rhythms depend on clear nightly melatonin signals to assess time of year. Thus, light at night can derange temporal adaptations. Indeed, disruption of naturally evolved light-dark cycles results in several physiological and behavioural changes with potentially serious implications for physiology, behaviour and mood. In this review, data from night-shift workers on their elevated risk for metabolic disorders, as well as data from animal studies will be discussed. Night-shift workers are predisposed to obesity and dysregulated metabolism that may result from disrupted circadian rhythms. Although studies in human subjects are correlative, animal studies have revealed several mechanisms through which light at night may exert its effects on metabolism by disrupting circadian rhythms that are associated with inflammation, both in the brain and in the periphery. Disruption of the typical timing of food intake is a key effect of light at night and subsequent metabolic dysregulation. Strategies to avoid the effects of light at night on body mass dysregulation should be pursued.
Address Department of Neuroscience,The Ohio State University,Columbus, OH 43210,USA
Corporate Author Thesis
Publisher Place of Publication Editor
Language (up) English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0029-6651 ISBN Medium
Area Expedition Conference
Notes PMID:29747703 Approved no
Call Number GFZ @ kyba @ Serial 1896
Permanent link to this record
 

 
Author McKenna, H.; van der Horst, G.T.J.; Reiss, I.; Martin, D.
Title Clinical chronobiology: a timely consideration in critical care medicine Type Journal Article
Year 2018 Publication Critical Care (London, England) Abbreviated Journal Crit Care
Volume 22 Issue 1 Pages 124
Keywords Human Health; Review
Abstract A fundamental aspect of human physiology is its cyclical nature over a 24-h period, a feature conserved across most life on Earth. Organisms compartmentalise processes with respect to time in order to promote survival, in a manner that mirrors the rotation of the planet and accompanying diurnal cycles of light and darkness. The influence of circadian rhythms can no longer be overlooked in clinical settings; this review provides intensivists with an up-to-date understanding of the burgeoning field of chronobiology, and suggests ways to incorporate these concepts into daily practice to improve patient outcomes. We outline the function of molecular clocks in remote tissues, which adjust cellular and global physiological function according to the time of day, and the potential clinical advantages to keeping in time with them. We highlight the consequences of “chronopathology”, when this harmony is lost, and the risk factors for this condition in critically ill patients. We introduce the concept of “chronofitness” as a new target in the treatment of critical illness: preserving the internal synchronisation of clocks in different tissues, as well as external synchronisation with the environment. We describe methods for monitoring circadian rhythms in a clinical setting, and how this technology may be used for identifying optimal time windows for interventions, or to alert the physician to a critical deterioration of circadian rhythmicity. We suggest a chronobiological approach to critical illness, involving multicomponent strategies to promote chronofitness (chronobundles), and further investment in the development of personalised, time-based treatment for critically ill patients.
Address Critical Care Unit, Royal Free Hospital, Pond Street, London, NW3 2QG, UK. daniel.martin@ucl.ac.uk
Corporate Author Thesis
Publisher Place of Publication Editor
Language (up) English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1364-8535 ISBN Medium
Area Expedition Conference
Notes PMID:29747699 Approved no
Call Number GFZ @ kyba @ Serial 1897
Permanent link to this record
 

 
Author Shen, J.; Zhu, X.; Gu, Y.; Zhang, C.; Huang, J.; Qing, X.
Title Toxic effect of visible light on Drosophila lifespan depending upon diet protein content Type Journal Article
Year 2018 Publication The Journals of Gerontology. Series A, Biological Sciences and Medical Sciences Abbreviated Journal J Gerontol A Biol Sci Med Sci
Volume 74 Issue 2 Pages 163-167
Keywords Animals
Abstract We investigated the toxic effect of visible light on Drosophila lifespan in both sexes. The toxic effect of ultraviolet (UV) light on organisms is well known. However, the effects of illumination with visible light remain unclear. Here, we found that visible light could be toxic to Drosophila survival, depending on the protein content in diet. In addition, further analysis revealed significant interaction between light and sex, and showed that strong light shortened life span by causing opposite direction changes in mortality rate parameters in females versus males. Our findings suggest that photoageing may be a general phenomenon, and support the theory of sexual antagonistic pleiotropy in aging intervention. The results caution that exposure to visible light could be hazardous to life span and suggest that identification of the underlying mechanism would allow better understanding of aging intervention.
Address College of Life Information Science & Instrument Engineering, Hangzhou Dianzi University, Hangzhou, China
Corporate Author Thesis
Publisher Place of Publication Editor
Language (up) English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1079-5006 ISBN Medium
Area Expedition Conference
Notes PMID:29506144 Approved no
Call Number GFZ @ kyba @ Serial 1903
Permanent link to this record
 

 
Author De Magalhaes Filho, C.D.; Henriquez, B.; Seah, N.E.; Evans, R.M.; Lapierre, L.R.; Dillin, A.
Title Visible light reduces C. elegans longevity Type Journal Article
Year 2018 Publication Nature Communications Abbreviated Journal Nat Commun
Volume 9 Issue 1 Pages 927
Keywords Animals
Abstract The transparent nematode Caenorhabditis elegans can sense UV and blue-violet light to alter behavior. Because high-dose UV and blue-violet light are not a common feature outside of the laboratory setting, we asked what role, if any, could low-intensity visible light play in C. elegans physiology and longevity. Here, we show that C. elegans lifespan is inversely correlated to the time worms were exposed to visible light. While circadian control, lite-1 and tax-2 do not contribute to the lifespan reduction, we demonstrate that visible light creates photooxidative stress along with a general unfolded-protein response that decreases the lifespan. Finally, we find that long-lived mutants are more resistant to light stress, as well as wild-type worms supplemented pharmacologically with antioxidants. This study reveals that transparent nematodes are sensitive to visible light radiation and highlights the need to standardize methods for controlling the unrecognized biased effect of light during lifespan studies in laboratory conditions.
Address The Howard Hughes Medical Institute, Molecular and Cell Biology Department, Li Ka Shing Center, University of California Berkeley, Berkeley, CA, 94720, USA. dillin@berkeley.edu
Corporate Author Thesis
Publisher Place of Publication Editor
Language (up) English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2041-1723 ISBN Medium
Area Expedition Conference
Notes PMID:29500338; PMCID:PMC5834526 Approved no
Call Number GFZ @ kyba @ Serial 1904
Permanent link to this record
 

 
Author Bian, Z.; Yang, Q.; Li, T.; Cheng, R.; Barnett, Y.; Lu, C.
Title Study of the beneficial effects of green light on lettuce grown under short-term continuous red and blue light-emitting diodes Type Journal Article
Year 2018 Publication Physiologia Plantarum Abbreviated Journal Physiol Plant
Volume 164 Issue 2 Pages 226-240
Keywords Plants
Abstract Red and blue light are the most important light spectra for driving photosynthesis to produce adequate crop yield. It is also believed that green light may contribute to adaptations to growth. However, the effects of green light, which can trigger specific and necessary responses of plant growth, have been underestimated in the past. In this study, lettuce (Lactuca sativa L.) was exposed to different continuous light (CL) conditions for 48 h by a combination of red and blue light-emitting diodes (LEDs) supplemented with or without green LEDs, in an environmental-controlled growth chamber. Green light supplementation enhanced photosynthetic capacity by increasing net photosynthetic rates (Pn ), maximal photochemical efficiency (Fv /Fm ), electron transport for carbon fixation (JPSII ) and chlorophyll content in plants under the CL treatment. Green light decreased malondialdehyde and H2 O2 accumulation by increasing the activities of superoxide dismutase (SOD; EC 1.15.1.1) and ascorbate peroxidase (APX; EC 1.11.1.11) after 24 h of CL. Supplemental green light significantly increased the expression of photosynthetic genes LHCb and PsbA from 6 to 12 h, and these gene expression were maintained at higher levels than those under other light conditions between 12 and 24 h. However, a notable down-regulation of both LHCb and PsbA was observed during 24 to 48 h. These results indicate that the effects of green light on lettuce plant growth, via enhancing activity of particular components of antioxidantive enzyme system and promoting of LHCb and PsbA expression to maintain higher photosynthetic capacity, alleviated a number of the negative effects caused by CL.
Address School of Animal, Rural and Environmental Science, Brackenhurst Campus, Nottingham Trent University, NG25 0QF, UK
Corporate Author Thesis
Publisher Place of Publication Editor
Language (up) English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-9317 ISBN Medium
Area Expedition Conference
Notes PMID:29493775 Approved no
Call Number GFZ @ kyba @ Serial 1905
Permanent link to this record