|   | 
Details
   web
Records
Author Russart, K.L.G.; Nelson, R.J.
Title Light at night as an environmental endocrine disruptor Type Journal Article
Year 2018 Publication Physiology & Behavior Abbreviated Journal Physiol Behav
Volume 190 Issue Pages 82-89
Keywords Human Health; Animals
Abstract Environmental endocrine disruptors (EEDs) are often consequences of human activity; however, the effects of EEDs are not limited to humans. A primary focus over the past approximately 30years has been on chemical EEDs, but the repercussions of non-chemical EEDs, such as artificial light at night (LAN), are of increasing interest. The sensitivity of the circadian system to light and the influence of circadian organization on overall physiology and behavior make the system a target for disruption with widespread effects. Indeed, there is increasing evidence for a role of LAN in human health, including disruption of circadian regulation and melatonin signaling, metabolic dysregulation, cancer risk, and disruption of other hormonally-driven systems. These effects are not limited to humans; domesticated animals as well as wildlife are also exposed to LAN, and at risk for disrupted circadian rhythms. Here, we review data that support the role of LAN as an endocrine disruptor in humans to be considered in treatments and lifestyle suggestions. We also present the effects of LAN in other animals, and discuss the potential for ecosystem-wide effects of artificial LAN. This can inform decisions in agricultural practices and urban lighting decisions to avoid unintended outcomes.
Address Department of Neuroscience, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-9384 ISBN Medium
Area Expedition Conference
Notes (down) PMID:28870443 Approved no
Call Number LoNNe @ kyba @ Serial 1719
Permanent link to this record
 

 
Author Stone, T.
Title The Value of Darkness: A Moral Framework for Urban Nighttime Lighting Type Journal Article
Year 2018 Publication Science and Engineering Ethics Abbreviated Journal Sci Eng Ethics
Volume 24 Issue 2 Pages 607-628
Keywords Darkness; Society
Abstract The adverse effects of artificial nighttime lighting, known as light pollution, are emerging as an important environmental issue. To address these effects, current scientific research focuses mainly on identifying what is bad or undesirable about certain types and uses of lighting at night. This paper adopts a value-sensitive approach, focusing instead on what is good about darkness at night. In doing so, it offers a first comprehensive analysis of the environmental value of darkness at night from within applied ethics. A design for values orientation is utilized to conceptualize, define, and categorize the ways in which value is derived from darkness. Nine values are identified and categorized via their type of good, temporal outlook, and spatial characteristics. Furthermore, these nine values are translated into prima facie moral obligations that should be incorporated into future design choices, policy-making, and innovations to nighttime lighting. Thus, the value of darkness is analyzed with the practical goal of informing future decision-making about urban nighttime lighting.
Address Ethics and Philosophy of Technology Section, Delft University of Technology, Jaffalaan 5, 2628 BX, Delft, The Netherlands. t.w.stone@tudelft.nl
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1353-3452 ISBN Medium
Area Expedition Conference
Notes (down) PMID:28597220; PMCID:PMC5876417 Approved no
Call Number GFZ @ kyba @ Serial 2225
Permanent link to this record
 

 
Author Arendt, J.; Middleton, B.
Title Human seasonal and circadian studies in Antarctica (Halley, 75 degrees S) Type Journal Article
Year 2018 Publication General and Comparative Endocrinology Abbreviated Journal Gen Comp Endocrinol
Volume 258 Issue Pages 250-258
Keywords Human Activities; Acclimatization/*physiology; Actigraphy; Adult; Antarctic Regions; Behavior/*physiology; Circadian Rhythm/*physiology; Darkness; Female; Heart Rate/physiology; Humans; Libido; Light; Male; Melatonin/blood; Photoperiod; *Seasons; Sleep/physiology; Young Adult; *Antarctica; *Circadian; *Light; *Melatonin; *Seasonal
Abstract Living for extended periods in Antarctica exposes base personnel to extremes of daylength (photoperiod) and temperature. At the British Antarctic Survey base of Halley, 75 degrees S, the sun does not rise for 110 d in the winter and does not set for 100 d in summer. Photoperiod is the major time cue governing the timing of seasonal events such as reproduction in many species. The neuroendocrine signal providing photoperiodic information to body physiology is the duration of melatonin secretion which reflects the length of the night: longer in the short days of winter and shorter in summer. Light of sufficient intensity and spectral composition serves to suppress production of melatonin and to set the circadian timing and the duration of the rhythm. In humans early observations suggested that bright (>2000 lux) white light was needed to suppress melatonin completely. Shortly thereafter winter depression (Seasonal Affective Disorder or SAD) was described, and its successful treatment by an artificial summer photoperiod of bright white light, sufficient to shorten melatonin production. At Halley dim artificial light intensity during winter was measured, until 2003, at a maximum of approximately 500 lux in winter. Thus a strong seasonal and circadian time cue was absent. It seemed likely that winter depression would be common in the extended period of winter darkness and could be treated with an artificial summer photoperiod. These observations, and predictions, inspired a long series of studies regarding human seasonal and circadian status, and the effects of light treatment, in a small overwintering, isolated community, living in the same conditions for many months at Halley. We found little evidence of SAD, or change in duration of melatonin production with season. However the timing of the melatonin rhythm itself, and/or that of its metabolite 6-sulphatoxymelatonin (aMT6s), was used as a primary marker of seasonal, circadian and treatment changes. A substantial phase delay of melatonin in winter was advanced to summer phase by a two pulse 'skeleton' bright white light treatment. Subsequently a single morning pulse of bright white light was effective with regard to circadian phase and improved daytime performance. The circadian delay evidenced by melatonin was accompanied by delayed sleep (logs and actigraphy): poor sleep is a common complaint in Polar regions. Appropriate extra artificial light, both standard white, and blue enriched, present throughout the day, effectively countered delay in sleep timing and the aMT6s rhythm. The most important factor appeared to be the maximum light experienced. Another manifestation of the winter was a decline in self-rated libido (men only on base at this time). Women on the base showed lower aspects of physical and mental health compared to men. Free-running rhythms were seen in some subjects following night shift, but were rarely found at other times, probably because this base has strongly scheduled activity and leisure time. Complete circadian adaptation during a week of night shift, also seen in a similar situation on North Sea oil rigs, led to problems readapting back to day shift in winter, compared to summer. Here again timed light treatment was used to address the problem. Sleep, alertness and waking performance are critically dependent on optimum circadian phase. Circadian desynchrony is associated with increased risk of major disease in shift workers. These studies provide some groundwork for countering/avoiding circadian desynchrony in rather extreme conditions.
Address Biochemistry and Physiology, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, UK. Electronic address: b.middleton@surrey.ac.uk
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0016-6480 ISBN Medium
Area Expedition Conference
Notes (down) PMID:28526480 Approved no
Call Number IDA @ john @ Serial 2248
Permanent link to this record
 

 
Author Hänel, A.; Posch, T.; Ribas, S.J.; Aubé, M.; Duriscoe, D.; Jechow, A.; Kolláth, Z.; Lolkema, D.E.; Moore, C.; Schmidt, N.; Spoelstra, H.; Wuchterl, G.; Kyba, C.C.M.
Title Measuring night sky brightness: methods and challenges Type Journal Article
Year 2018 Publication Journal of Quantitative Spectroscopy and Radiative Transfer Abbreviated Journal Journal of Quantitative Spectroscopy and Radiative Transfer
Volume 205 Issue Pages 278-290
Keywords skyglow
Abstract Measuring the brightness of the night sky has become an increasingly important topic in recent years, as artificial lights and their scattering by the Earthâ??s atmosphere continue spreading around the globe. Several instruments and techniques have been developed for this task. We give an overview of these, and discuss their strengths and limitations. The different quantities that can and should be derived when measuring the night sky brightness are discussed, as well as the procedures that have been and still need to be defined in this context. We conclude that in many situations, calibrated consumer digital cameras with fisheye lenses provide the best relation between ease-of-use and wealth of obtainable information on the night sky. While they do not obtain full spectral information, they are able to sample the complete sky in a period of minutes, with colour information in three bands. This is important, as given the current global changes in lamp spectra, changes in sky radiance observed only with single band devices may lead to incorrect conclusions regarding long term changes in sky brightness. The acquisition of all-sky information is desirable, as zenith-only information does not provide an adequate characterization of a site. Nevertheless, zenith-only single-band one-channel devices such as the â??Sky Quality Meterâ? continue to be a viable option for long-term studies of night sky brightness and for studies conducted from a moving platform. Accurate interpretation of such data requires some understanding of the colour composition of the sky light. We recommend supplementing long-term time series derived with such devices with periodic all-sky sampling by a calibrated camera system and calibrated luxmeters or luminance meters.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-4073 ISBN Medium
Area Expedition Conference
Notes (down) Approved no
Call Number LoNNe @ kyba @; GFZ @ kyba @ Serial 1731
Permanent link to this record
 

 
Author Neri, L.; Coscieme, L.; Giannetti, B.F.; Pulselli, F.M.
Title Imputing missing data in non-renewable empower time series from night-time lights observations Type Journal Article
Year 2018 Publication Ecological Indicators Abbreviated Journal Ecological Indicators
Volume 84 Issue Pages 106-118
Keywords Remote Sensing
Abstract Emergy is an environmental accounting tool, with a specific set of indicators, that proved to be highly informative for sustainability assessment of national economies. The empower, defined as emergy per unit time, is a measure of the overall flow of resources used by a system in order to support its functioning. Continuous time-series of empower are not available for most of the world countries, due to the large amount of data needed for its calculation year by year. In this paper, we aim at filling this gap by means of a model that facilitates reconstruction of continuous time series of the non-renewable component of empower for a set of 57 countries of the world from 1995 to 2012. The reconstruction is based on a 3 year global emergy dataset and on the acknowledged relationships between the use of non-renewables, satellite observed artificial lights emitted at night, and Gross Domestic Product. Results show that this method provides accurate estimations of non-renewable empower at the country scale. The estimation model can be extended onward and backward in time and replicated for more countries, also using higher-resolution satellite imageries newly available. Besides representing an important advancement in emergy theory, this information is helpful for monitoring progresses toward Sustainable Development and energy use international goals.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1470160X ISBN Medium
Area Expedition Conference
Notes (down) Approved no
Call Number LoNNe @ kyba @ Serial 1706
Permanent link to this record